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Lecture 10: Control Il

Professor Katie Driggs-Campbell
February 20, 2024

ECE484: Principles of Safe Autonomy
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Administrivia
Team formation due this week

Upcoming due dates:
HW1 and MP1 due Friday 2/23
HW2 and MP2 due Friday 3/01
Project Pitches in class 3/05 and 3/07

Bonus MP in April
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Today’s Plan

Review some differential equations and linear algebra
Take a look at PID controllers
Build up waypoint following using the models discussed previously



Dynamical Systems Model
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Error Dynamics
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PID Controllers

Proportional

.

Integral

B
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Viewing as a Second Order System

The second order systemiis: € + ¢, + c,e = 0
In standard form, we write:
é(t) + 28w e(t) + wie(t) =0
where ¢ is the damping ratio and w,, is the natural frequency
The eigenvalues are given as:

A = —Swp T Wy /€% —1

Note that the system is stable iff w,, and ¢ are positive



Second Order Dynamics: Cases
* Overdamped: ¢ > 1

L. Im(s) Im(s) Im(s)
* Roots sq and s, are distinct ki
* 0,(t) = cresit + cyesat n o\
* Time constant is the less negative root 1/t —1/t, |Re(s o |Rels Gun |Re(s
e Critically damped: { =1

overdamped (¢ > 1) critically damped (( = 1) underdamped ({ < 1)

* Roots s and s, are equal and real
* 0,(t) = (citcyt)e™Ont 3
e Time constant is given by 1/w,, 9
* Underdamped: { < 1
* Roots are complex conjugates: -
. underdamped shorter unstable

51’2 == —C(Un i] settling time

« 0,(t) = (cicos wyt + ¢, sin wgt)e $@nt
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Simple Damped Spring System

mx+bx+kx=F

., bk
X+—X+—X=U
m m

X+ 28wex + wix = u

¢ damping ratio
wq Natural frequency

mx+bx+kx=u

L{m¥X + bx + kx} =

ms?X(s) + bsX(s) + kX (s)
Transfer Function:

X(s) B 1
U(s) ms2+bs+k
Poles:
—b + Vb2 — 4mk
S =
2m



Undamped Case: b = 0

Step Response
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Spring

.Sorry — no video!

Overdamped Case: b2 — 4mk > 0

Step Response
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Step Response
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Spring
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On to PID for path following
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Path following control

The path followed by a robot can be represented by a trajectory or path
parameterized by time
from a higher-level planner, map, or perception system

Defines the desired instantaneous pose p(t)
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Open-loop waypoint following

We can write an open-loop controller for a robot that is naturally
controlled via angular velocity, such as a differential-drive robot:

v(t)] _ Ja’c(t)2+y'(t)2‘

uw,OL(t) — [Cl)(t) —

0(t)
We can write an open-loop controller for a robot with car-like steering:
2 ()% +y(1)?
Uy oy (£) = [”(t) - 10
K,OL — K(t) —
V()2 + y()?)




Path following control

The path followed by a robot can be represented by a trajectory or path
parameterized by time
from a higher-level planner, map, or perception system

Defines the desired instantaneous pose p(t)
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’/_:—
-@
-
'l

e
/,

Feedback

S
/'. p(t) = [x(t)r J’(t), H(t)] Controller
==

——

Output

Disturbance

Piant




4o

Path following control

Desired instantaneous pose p(t)

How to define error between actual pose pg(t) and desired pose
p(t) in the form of y,;(t) — y(t)?

*
*
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pp(t) = [x5(t), yp(t), 6p(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [5s(t); 5n(t): 50 (t), 617 (t)]

[0, 6,,] define the coordinate errors in the vehicle’s reference frame:
along track error and cross track error

4o

p(t) = [x(0),y(£),0(1), v(t)]

4
4

--------
.

pp(t) = [xp(t), yp(t), O5(t), vp(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [5s(t); 5n(t): 50 (t), 617 (t)]

[0, 6,,] define the coordinate errors in the vehicle’s reference frame:  p(t) = [x(t), y(t), 6(¢t), v(t)]
along track error and cross track error 4

4
4

distance ahead or behind the target in the “‘;;«‘"
instantaneous direction of motion. | G{'
= cos(HB(t)) (x(t) — Xg (t)) + Sin(HB(t)) (y(t) — yB(t)) ----- e

portion of the position error orthogonal to the
intended direction of motion

8 = —sin(85 (1)) (x(t) — x5(t)) + cos(65()) (y(©) — y5(D))

pp(t) = [xp(t), yp(t), O5(t), vp(t)]
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Path following control

The error vector measured vehicle coordinates

e(t) = [5s(t); 5n(t): 50 (t), 617 (t)]

[0, 6,,] define the coordinate errors in the vehicle’s reference frame:
along track error and cross track error

distance ahead or behind the target in the
instantaneous direction of motion.

8s = cos(05(1)) (x(t) — x5 (D)) + sin(85 (D)) (v () — y5(1))

portion of the position error orthogonal to the
intended direction of motion

8 = —sin(85 (1)) (x(t) — x5(t)) + cos(65()) (y(©) — y5(D))

Heading error: difference between desired and actual orientation and
direction

6p = 0(t) — 0p(t)
&y = v(t) — vp(t)

Each of these errors match the form y;(t) — y(t)

4o

p(t) = [x(0),y(£),0(1), v(t)]

4
4

pp(t) = [xp(t), yp(t), O5(t), vp(t)]
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A simple P-controller example

Given a simple system: y(t) = u(t) + d(t)
Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — ya(t))
y(t) = —Kpy(t) + Kpyq(t) + d(t)

u(t)

d(t)

PPPPP

y() = h(x(£)
ya(t)

e(t) =y(®) - ya(®)
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A simple P-controller example
Given a simple system: y(t) = u(t) + d(t)
Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — ya(t))
y(t) = —Kpy(t) + Kpy,(t) + d(t)
Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dss
What is the steady state output?
Set: —Kpy(t) + Kpyg +dss =0
Solve for ygo: y(t) = % + Yo

dt)

Plant

x=f(xud)

u=g(e)

y() = h(x(£)
;
ya(t)

e(t) =y(®) - ya(®)
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A simple P-controller example

u(t)
Given a simple system: y(t) = u(t) + d(t)
Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) —ya(t))
y(t) = —Kpy(t) + Kpyq(t) + d(t)
Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dgs
What is the steady state output?

Set: —Kpy(t) + Kpyy +dss =0
Solve for y..: y(t) = % + Yo
P

dt)

Plant

x=f(xud)

u=g(e)

y() = h(x(£)
;
ya(t)

e(t) =y(®) - ya(®)
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A simple P-controller example

u(t)

Given a simple system: y(t) = u(t) + d(t)

Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dss

Steady state output y,, = ?{—S: + Vo

dt)

Plant

x=f(xud)

u=g(e)

y() = h(x(£)
;
ya(t)

e(t) =y(®) - ya(®)
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A simple P-controller example

Given a simple system: y(t) = u(t) + d(t)

Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dss

Steady state output y,, = ?{—S; + Vo

Transient behavior:
:V(t) — :VOe_t/T + yss(l — e_t/T); T = 1/KP

u(t)

dt)

Plant

x=f(xud)

u=g(e)

y() = h(x(£)
;
ya(t)

e(t) =y(®) - ya(®)

To make steady state error small, we can increase K, at the expense

of longer transients
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Control Law

Control input is given by u = [a, 6]
where a is the acceleration and 9 is the steering angle

— 65
o) Noise p(©) = [x(0) y(D), 6(0)]
u — K n l l Control
% -]
_51] a Feedback
—_—
O Kn KO O 1 Output

Disturbance

|
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Control Law

K — [KS 0 0 K,
0 K, Ko O
The pure-pursuit controller produced by this

gain matrix performs a PD-control. It uses a
PD-controller to correct along-track error.

The control on curvature is also a PD-
controller for cross-track error because dg is
related to the derivative of §,,.




4o

Summary

Reviewed linear systems and stability of differential equations

Looked at PID controllers as a way to regulate systems using state
feedback

Derived a waypoint following error dynamics
This will be needed for MP2!

Next time: Advanced Control Topics!



