Lecture 10: Control II

Professor Katie Driggs-Campbell

February 20, 2024

ECE484: Principles of Safe Autonomy

Administrivia

- Team formation due this week
- Upcoming due dates:
 - HW1 and MP1 due Friday 2/23
 - HW2 and MP2 due Friday 3/01
 - Project Pitches in class 3/05 and 3/07
- Bonus MP in April

Today's Plan

- Review some differential equations and linear algebra
- Take a look at PID controllers
- Build up waypoint following using the models discussed previously

Dynamical Systems Model

Describe behavior in terms of instantaneous laws: $\frac{dx(t)}{dt} = \dot{x}(t) = f(x(t), u(t)) // x[t+1] = \overline{f}(x[t-1], u[t-1])$ where $t \in \mathbb{R}, x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$, and $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ gives the dynamics / transition function

 $\dot{x} = Ax + Bu$ if u = -Kx $\rightarrow \dot{x} = (A - kB)x$ \hat{A}

Recall (1) $\dot{\mathbf{x}} = A\mathbf{x} \longrightarrow \mathbf{x}(t) = \boldsymbol{\varrho}^{At} \mathbf{x}_{o}$ what does it mean when we say a fn x() $|ex| x(t) = e^{at}$ satisfies a diff eq? does it satisfy x=ax? () take fn x(·) $2\dot{x}=\alpha l^{at}$ @ differentiate it 3 f(x(t)) = a x(t)3 plug into f(x(+)) =al^{at} (4) does it match #t?

Recall (2)
system is stable if the real parts of the
eigenvalues are negative

$$\rightarrow$$
 unstable if $\exists x_0 \ s.t. \ d \neq \infty$
 $\ell^{\lambda t}$ where $\lambda = a + bi \in C$
 $\int_{a}^{bird} \lambda \ w \ characteristic
 ρ_{0} point $a:$
 $det(A - \lambda I) = 0$
 $a = 0$
 $a = 0$
 $a = 0$$

.

.

+ kaé + ki Se(2)d2 Kre **u**= remove steady state dampen or accumulated error reduce vel error pos error

PID Controllers

(("0

Linear Error Dynamics $a_{\rho}e^{(\rho)} + a_{\rho} - e^{(\rho-1)} + \cdots + a_{r}e^{i} + a_{r}e^{i} = 0$ $X_1 = e_1 X_2 = \dot{e} = \dot{x}_1, X_3 = \ddot{e} = \dot{x}_2, \cdots$ $\chi_{p} = -\frac{\alpha_{0}}{\alpha_{p}} \chi_{1} - \frac{\alpha_{1}}{\alpha_{p}} \chi_{2} - \cdots$ $\psi_{\mathbf{x}=\mathbf{A}\mathbf{x}}$, where $\mathbf{x} = [\mathbf{x}, \dots, \mathbf{x}_{p}]^{\mathsf{T}}$ $\begin{bmatrix} \dot{x}_{1} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ x_{2} \\ x_{3} \\ -\alpha_{0} & -\alpha_{1} \\ \alpha_{0} & x_{3} \\ x_{4} \\ x_{5} \\ \alpha_{6} & x_{5} \\ x_{6} \\ x_{7} \\ x_{6} \\ x_{7} \\ x_{7}$

Viewing as a Second Order System

- The second order system is: $\ddot{e} + c_1 \dot{e} + c_2 e = 0$
- In standard form, we write:

 $\ddot{e}(t) + 2\xi\omega_n\dot{e}(t) + \omega_n^2 e(t) = 0$

where ξ is the *damping ratio* and ω_n is the *natural frequency*

• The eigenvalues are given as:

$$\lambda_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

• Note that the system is stable iff ω_n and ξ are positive

Second Order Dynamics: Cases

- Overdamped: $\zeta > 1$
 - Roots s_1 and s_2 are distinct
 - $\theta_e(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$
 - Time constant is the less negative root
- Critically damped: $\zeta = 1$
 - Roots s_1 and s_2 are equal and real
 - $\theta_e(t) = (c_1 + c_2 t)e^{-\omega_n t}$
 - Time constant is given by $1/\omega_n$
- Underdamped: $\zeta < 1$
 - Roots are complex conjugates:

 $s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$

• $\theta_e(t) = (c_1 \cos \omega_d t + c_2 \sin \omega_d t) e^{-\zeta \omega_n t}$

overdamped $(\zeta>1) \quad {\rm critically \ damped \ } (\zeta=1) \quad {\rm underdamped \ } (\zeta<1)$

Simple Damped Spring System

 $m \ddot{x} + b \dot{x} + kx = F$

$$m \ddot{x} + b\dot{x} + kx = u$$

$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = u$$

$$\ddot{x} + 2\xi\omega_0\dot{x} + \omega_0^2x = u$$

 ξ damping ratio ω_0 natural frequency

 $\mathcal{L}\{m\ddot{x} + b\dot{x} + kx\} =$ $ms^{2}X(s) + bsX(s) + kX(s)$ Transfer Function: $\frac{X(s)}{U(s)} = \frac{1}{ms^{2} + bs + k}$ Poles: $s = \frac{-b \pm \sqrt{b^{2} - 4mk}}{2m}$

Undamped Case: b = 0

Overdamped Case: $b^2 - 4mk > 0$

Underdamped Case: $b^2 - 4mk < 0$

0.2

0.25

With Feedback Control

On to PID for path following

- The path followed by a robot can be represented by a *trajectory or path* parameterized by time
 - \rightarrow from a higher-level planner, map, or perception system
- Defines the desired instantaneous pose p(t)

Open-loop waypoint following

• We can write an open-loop controller for a robot that is naturally controlled via angular velocity, such as a differential-drive robot:

$$u_{\omega,OL}(t) = \begin{bmatrix} v(t) \\ \omega(t) \end{bmatrix} = \begin{bmatrix} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \\ \dot{\theta}(t) \end{bmatrix}$$

• We can write an open-loop controller for a robot with car-like steering:

$$u_{\kappa,OL}(t) = \begin{bmatrix} v(t) \\ \kappa(t) \end{bmatrix} = \begin{bmatrix} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \\ \dot{\theta}(t) \\ \hline \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \end{bmatrix}$$

- The path followed by a robot can be represented by a *trajectory or path* parameterized by time
 - \rightarrow from a higher-level planner, map, or perception system
- Defines the desired instantaneous pose p(t)

- Desired instantaneous pose p(t)
- How to define error between actual pose $p_B(t)$ and desired pose p(t) in the form of $y_d(t) y(t)$?

$$p(t) = [x(t), y(t), \theta(t)]$$

The error vector measured vehicle coordinates

 $\mathbf{e}(t) = [\delta_s(t), \delta_n(t), \delta_\theta(t), \delta_v(t)]$

 $[\delta_s, \delta_n]$ define the coordinate errors in the vehicle's reference frame: along track error and cross track error

 $p_B(t) = [x_B(t), y_B(t), \theta_B(t), v_B(t)]$

The error vector measured vehicle coordinates

 $\mathbf{e}(t) = [\delta_s(t), \delta_n(t), \delta_\theta(t), \delta_v(t)]$

 $[\delta_s, \delta_n]$ define the coordinate errors in the vehicle's reference frame: along track error and cross track error

• Along track error: distance ahead or behind the target in the instantaneous direction of motion.

$$\delta_{s} = \cos(\theta_{B}(t)) \left(x(t) - x_{B}(t) \right) + \sin(\theta_{B}(t)) \left(y(t) - y_{B}(t) \right)$$

• Cross track error: portion of the position error orthogonal to the intended direction of motion

$$\delta_n = -\sin(\theta_B(t)) \left(x(t) - x_B(t) \right) + \cos(\theta_B(t)) \left(y(t) - y_B(t) \right)$$

 $p_B(t) = [x_B(t), y_B(t), \theta_B(t), v_B(t)]$

The error vector measured vehicle coordinates

 $\mathbf{e}(t) = [\delta_s(t), \delta_n(t), \delta_\theta(t), \delta_v(t)]$

 $[\delta_s, \delta_n]$ define the coordinate errors in the vehicle's reference frame: along track error and cross track error

• Along track error: distance ahead or behind the target in the instantaneous direction of motion.

 $\delta_{s} = \cos(\theta_{B}(t)) \left(x(t) - x_{B}(t) \right) + \sin(\theta_{B}(t)) \left(y(t) - y_{B}(t) \right)$

• Cross track error: portion of the position error orthogonal to the intended direction of motion

 $\delta_n = -\sin \bigl(\theta_B(t) \bigr) \bigl(x(t) - x_B(t) \bigr) + \cos \bigl(\theta_B(t) \bigr) \bigl(y(t) - y_B(t) \bigr)$

• Heading error: difference between desired and actual orientation and direction

$$\begin{split} \delta_{\theta} &= \theta(t) - \theta_B(t) \\ \delta_{v} &= v(t) - v_B(t) \end{split}$$

 \rightarrow Each of these errors match the form $y_d(t) - y(t)$

 $p_B(t) = [x_B(t), y_B(t), \theta_B(t), v_B(t)]$

u(t) u(t) (controller) u = g(e) $e(t) = y(t) - y_{d}(t)$

• Given a simple system: $\dot{y}(t) = u(t) + d(t)$

• Using proportional (P) controller:

$$u(t) = -K_P e(t) = -K_P (y(t) - y_d(t))$$

$$\dot{y}(t) = -K_P y(t) + K_P y_d(t) + d(t)$$

- Given a simple system: $\dot{y}(t) = u(t) + d(t)$
- Using proportional (P) controller:

$$u(t) = -K_P e(t) = -K_P (y(t) - y_d(t))$$

$$\dot{y}(t) = -K_P y(t) + K_P y_d(t) + d(t)$$

• Consider constant setpoint y_0 and disturbance d_{ss}

$$\dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss}$$

• What is the steady state output?

Set: -K_Py(t) + K_Py₀ + d_{ss} = 0
 Solve for y_{ss}: y(t) =
$$\frac{d_{ss}}{K_P} + y_0$$

- Given a simple system: $\dot{y}(t) = u(t) + d(t)$
- Using proportional (P) controller:

$$u(t) = -K_P e(t) = -K_P (y(t) - y_d(t))$$

$$\dot{y}(t) = -K_P y(t) + K_P y_d(t) + d(t)$$

• Consider constant setpoint y_0 and disturbance d_{ss}

$$\dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss}$$

• What is the steady state output?

• Set:
$$-K_P y(t) + K_P y_0 + d_{ss} = 0$$

• Solve for
$$y_{ss}$$
: $y(t) = \frac{d_{ss}}{K_P} + y_0$

- Given a simple system: $\dot{y}(t) = u(t) + d(t)$
- Consider constant setpoint y_0 and disturbance d_{ss}

$$\dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss}$$

• Steady state output
$$y_{ss} = \frac{d_{ss}}{K_P} + y_0$$

- Given a simple system: $\dot{y}(t) = u(t) + d(t)$
- Consider constant setpoint y_0 and disturbance d_{ss}

$$\dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss}$$

- Steady state output $y_{ss} = \frac{d_{ss}}{K_P} + y_0$
- Transient behavior:

$$y(t) = y_0 e^{-t/T} + y_{ss} (1 - e^{-t/T}), T = 1/K_P$$

• To make steady state error small, we can increase K_P at the expense of longer transients

Control Law

Control input is given by $u = [a, \delta]^{\mathsf{T}}$

where a is the acceleration and δ is the steering angle

$$u = K \begin{bmatrix} \delta_{s} \\ \delta_{n} \\ \delta_{\theta} \\ \delta_{v} \end{bmatrix}$$
$$K = \begin{bmatrix} K_{s} & 0 & 0 & K_{v} \\ 0 & K_{n} & K_{\theta} & 0 \end{bmatrix}$$

Control Law

$$K = \begin{bmatrix} K_s & 0 & 0 & K_v \\ 0 & K_n & K_\theta & 0 \end{bmatrix}$$

The pure-pursuit controller produced by this gain matrix performs a PD-control. It uses a PD-controller to correct along-track error.

The control on curvature is also a PDcontroller for cross-track error because δ_{θ} is related to the derivative of δ_n .

Summary

- Reviewed linear systems and stability of differential equations
- Looked at PID controllers as a way to regulate systems using state feedback
- Derived a waypoint following error dynamics
 →This will be needed for MP2!
- *Next time:* Advanced Control Topics!

