Lecture 10: Control II

Professor Katie Driggs-Campbell
February 20, 2024

ECE484: Principles of Safe Autonomy

Administrivia

- Team formation due this week
- Upcoming due dates:
- HW1 and MP1 due Friday 2/23
- HW2 and MP2 due Friday 3/01
- Project Pitches in class 3/05 and 3/07
- Bonus MP in April

Today's Plan

- Review some differential equations and linear algebra
- Take a look at PID controllers
- Build up waypoint following using the models discussed previously

Dynamical Systems Model

Describe behavior in terms of instantaneous laws:

$$
\begin{aligned}
& \text { escribe behavior in terms of instantaneous laws: } \\
& \frac{d x(t)}{d t}=\dot{x}(t)=f(x(t), u(t)) / / x[t+1]=\bar{f}(x[t], u[t])
\end{aligned}
$$

where $t \in \mathbb{R}, x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}$, and $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ gives the dynamics / transition function

$$
\begin{aligned}
\dot{x}=A x+B u & \text { if } u=-k x \\
& \rightarrow \dot{x}=\underbrace{(A-k B}_{\hat{A}}) x
\end{aligned}
$$

Recall (1)

$$
\dot{x}=A x \leadsto x(t)=e^{A t} x_{0}
$$

what does it mean when we say a $f_{n} x(6)$ satisfies a diff eq?
(1) take $f n x(\cdot)$
(2) differentiate it
(3) plug into $f(x(t))$
ex $x(t)=e^{\text {at }}$
does it satisfy $\dot{x}=a x$?
(2) $\dot{x}=a e^{a t}$
(3) $f(x(t))=a x(t)$

$$
\begin{aligned}
& =a l^{a t}
\end{aligned}
$$

(4)

Recall (2)
system is stable if the real parts of the eigenvalues are negative
\rightarrow unstable if $\exists x$. st. $\lim _{t \rightarrow \infty}\|x(t)\|=0$

$$
\begin{aligned}
& e^{\lambda t} \text { where } \lambda=a+b i \in \mathbb{C} \\
& \text { find } \lambda \omega / \text { characteristic } \\
& \text { polynomial: } \\
& \operatorname{det}(A-\lambda I)=0 \\
& L e^{a t}(\cos b t+i \sin b t) \\
& a=0
\end{aligned}
$$

Examples $\dot{x}=A x$
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{0}\end{array}\right]=\left[\begin{array}{cc}-1 / 4 & -2 / 5 \\ 3 & -1 / 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
$\lambda_{1}=-0.25-\mathrm{i} 1.10$
$\lambda_{2}=-0.25+i 1.10$

(π)

Examples

$\left[\begin{array}{l}\dot{x}_{2} \\ \dot{x}_{1}\end{array}\right]=\left[\begin{array}{cc}-1 / 4 & -2 / 5 \\ 3 & -1 / 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
$\lambda_{1}=-0.25-i 1.10$
$\lambda_{2}=-0.25+i 1.10$
$\left[\begin{array}{l}\dot{x_{2}} \\ \dot{x_{1}}\end{array}\right]=\left[\begin{array}{cc}1 / 4 & -2 / 5 \\ 3 & -1 / 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
\begin{aligned}
& \lambda_{1}=+i 0.1066 \\
& \lambda_{2}=-i 0.1066
\end{aligned}
$$

$\left[\begin{array}{l}\dot{x_{2}} \\ \dot{x_{1}}\end{array}\right]=\left[\begin{array}{cc}1 / 2 & -2 / 5 \\ 3 & -1 / 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
\begin{aligned}
& \lambda_{1}=0.125+i 1.029 \\
& \lambda_{2}=-0.125-i 1.029
\end{aligned}
$$

$\left[\begin{array}{c}\dot{x}_{2} \\ \dot{x}_{1}\end{array}\right]=\left[\begin{array}{cc}1 / 2 & -2 / 5 \\ 3 & -1 / 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
$\lambda_{1}=0.125+11.029$
$\lambda_{2}=-0.125-11.029$

Examples

$\left[\begin{array}{l}\dot{x}_{2} \\ \dot{x}_{1}\end{array}\right]=\left[\begin{array}{cc}-1 / 4 & -2 / 5 \\ 3 & -1 / 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
$\left[\begin{array}{l}\dot{x_{2}} \\ \dot{x}_{1}\end{array}\right]=\left[\begin{array}{cc}1 / 4 & -2 / 5 \\ 3 & -1 / 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
\left[\begin{array}{l}
\dot{x_{2}} \\
\dot{x_{1}}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & -2 / 5 \\
3 & -1 / 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad\left[\begin{array}{l}
\dot{x_{2}} \\
\dot{x_{1}}
\end{array}\right]=\left[\begin{array}{cc}
-1 / 4 & -2 / 5 \\
3 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \lambda_{1}=0.125+i 1.029 \\
& \lambda_{2}=-0.125-11.029
\end{aligned}
$$

$$
\lambda_{1}=-0.375-\mathrm{i} 1.088
$$

$$
\lambda_{2}=-0.375+i 1.088
$$

$\lambda_{1}=0.125+11.029$
$\lambda_{2}=-0.125-11.029$

Error Dynamics

Feedback Control \qquad $u \in f(e)$

PID controller

$$
u=\underbrace{k_{p} e}_{\begin{array}{c}
\text { reduce } \\
\text { pos error }
\end{array}}+\underbrace{k_{d} e \dot{e}}_{\begin{array}{c}
\text { damper n } \\
\text { vel error }
\end{array}}+\underbrace{k_{i} \int e(\tau) d \tau}_{\begin{array}{c}
\text { or accumulated error stead state }
\end{array}}
$$

PID Controllers

- Proportional

$$
u=k_{p} e
$$

$$
u=k_{i} \int e(\tau) d \tau
$$

- Integral

- Derivative

Linear Error Dynamics

$$
\begin{aligned}
& a_{p} \frac{e^{(p)}}{x_{1}}=e, a_{p-1} e^{(p-1)}+\cdots+a_{1} \dot{e}+a_{0} e=0 \\
& x_{p}=-\dot{x}_{1}, x_{p} x_{1}-x_{1} / a_{p} x_{2}-\ldots \dot{x}_{2}, \cdots \\
& \downarrow \\
& \dot{x}=A x, ~ w h e r e x=\left[\begin{array}{lll}
x_{1} & \cdots & x_{p}
\end{array}\right]^{\top} \\
& {\left[\begin{array}{c}
\dot{x}_{1} \\
\vdots \\
\dot{x}_{p}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
a_{p} / a_{p}
\end{array} \cdots \cdots\right.}
\end{aligned}
$$

Viewing as a Second Order System

- The second order system is: $\ddot{e}+c_{1} \dot{e}+c_{2} e=0$
- In standard form, we write:

$$
\ddot{e}(t)+2 \xi \omega_{n} \dot{e}(t)+\omega_{n}^{2} e(t)=0
$$

where ξ is the damping ratio and ω_{n} is the natural frequency

- The eigenvalues are given as:

$$
\lambda_{1,2}=-\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2}-1}
$$

- Note that the system is stable iff ω_{n} and ξ are positive

Second Order Dynamics: Cases

- Overdamped: $\zeta>1$
- Roots s_{1} and s_{2} are distinct
- $\theta_{e}(t)=c_{1} e^{s_{1} t}+c_{2} e^{s_{2} t}$
- Time constant is the less negative root
- Critically damped: $\zeta=1$
- Roots s_{1} and s_{2} are equal and real

overdamped $(\zeta>1) \quad$ critically damped $(\zeta=1) \quad$ underdamped $(\zeta<1)$
- $\theta_{e}(t)=\left(c_{1}+c_{2} t\right) e^{-\omega_{n} t}$
- Time constant is given by $1 / \omega_{n}$
- Underdamped: $\zeta<1$
- Roots are complex conjugates:

$$
s_{1,2}=-\zeta \omega_{n} \pm \boldsymbol{j} \omega_{n} \sqrt{1-\zeta^{2}}
$$

- $\theta_{e}(t)=\left(c_{1} \cos \omega_{d} t+c_{2} \sin \omega_{d} t\right) e^{-\zeta \omega_{n} t}$

Simple Damped Spring System

$$
\begin{aligned}
& \quad \begin{array}{l}
m \ddot{x}+b \dot{x}+k x=F \\
\\
\quad \ddot{x}+\frac{b}{m} \dot{x}+\frac{k}{m} x=u \\
\ddot{x}+2 \xi \omega_{0} \dot{x}+\omega_{0}^{2} x=u
\end{array} \\
& \xi \quad \text { damping ratio } \\
& \omega_{0} \text { natural frequency }
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{L}\{m \ddot{x}+b \dot{x}+k x\}= \\
m s^{2} X(s)+b s X(s)+k X(s)
\end{gathered}
$$

Transfer Function:

$$
\frac{X(s)}{U(s)}=\frac{1}{m s^{2}+b s+k}
$$

Poles:

$$
s=\frac{-b \pm \sqrt{b^{2}-4 m k}}{2 m}
$$

Underdamped Case: $b^{2}-4 m k<0$
With Feedback Control

On to PID for path following

Path following control

- The path followed by a robot can be represented by a trajectory or path parameterized by time
\rightarrow from a higher-level planner, map, or perception system
- Defines the desired instantaneous pose $p(t)$

Open-loop waypoint following

- We can write an open-loop controller for a robot that is naturally controlled via angular velocity, such as a differential-drive robot:

$$
u_{\omega, O L}(t)=\left[\begin{array}{c}
v(t) \\
\omega(t)
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\dot{x}(t)^{2}+\dot{y}(t)^{2}} \\
\dot{\theta}(t)
\end{array}\right]
$$

- We can write an open-loop controller for a robot with car-like steering:

$$
u_{\kappa, O L}(t)=\left[\begin{array}{l}
v(t) \\
\kappa(t)
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\dot{x}(t)^{2}+\dot{y}(t)^{2}} \\
\left.\frac{\dot{\theta}(t)}{\sqrt{\dot{x}(t)^{2}+\dot{y}(t)^{2}}}\right]
\end{array}\right.
$$

Path following control

- The path followed by a robot can be represented by a trajectory or path parameterized by time
\rightarrow from a higher-level planner, map, or perception system
- Defines the desired instantaneous pose $p(t)$

Path following control

- Desired instantaneous pose $p(t)$
- How to define error between actual pose $p_{B}(t)$ and desired pose $p(t)$ in the form of $y_{d}(t)-y(t)$?

Path following control

The error vector measured vehicle coordinates

$$
\mathrm{e}(t)=\left[\delta_{s}(t), \delta_{n}(t), \delta_{\theta}(t), \delta_{v}(t)\right]
$$

[δ_{S}, δ_{n}] define the coordinate errors in the vehicle's reference frame:

$$
p(t)=[x(t), y(t), \theta(t), v(t)]
$$ along track error and cross track error

$$
p_{B}(t)=\left[x_{B}(t), y_{B}(t), \theta_{B}(t), v_{B}(t)\right]
$$

Path following control

The error vector measured vehicle coordinates

$$
\mathrm{e}(t)=\left[\delta_{s}(t), \delta_{n}(t), \delta_{\theta}(t), \delta_{v}(t)\right]
$$

[δ_{S}, δ_{n}] define the coordinate errors in the vehicle's reference frame: along track error and cross track error

- Along track error: distance ahead or behind the target in the instantaneous direction of motion.

$$
\delta_{s}=\cos \left(\theta_{B}(t)\right)\left(x(t)-x_{B}(t)\right)+\sin \left(\theta_{B}(t)\right)\left(y(t)-y_{B}(t)\right)
$$

- Cross track error: portion of the position error orthogonal to the intended direction of motion

$$
\delta_{n}=-\sin \left(\theta_{B}(t)\right)\left(x(t)-x_{B}(t)\right)+\cos \left(\theta_{B}(t)\right)\left(y(t)-y_{B}(t)\right)
$$

$$
p(t)=[x(t), y(t), \theta(t), v(t)]
$$

$$
p_{B}(t)=\left[x_{B}(t), y_{B}(t), \theta_{B}(t), v_{B}(t)\right]
$$

Path following control

The error vector measured vehicle coordinates

$$
\mathrm{e}(t)=\left[\delta_{s}(t), \delta_{n}(t), \delta_{\theta}(t), \delta_{v}(t)\right]
$$

[δ_{S}, δ_{n}] define the coordinate errors in the vehicle's reference frame: along track error and cross track error

- Along track error: distance ahead or behind the target in the instantaneous direction of motion.

$$
\delta_{S}=\cos \left(\theta_{B}(t)\right)\left(x(t)-x_{B}(t)\right)+\sin \left(\theta_{B}(t)\right)\left(y(t)-y_{B}(t)\right)
$$

- Cross track error: portion of the position error orthogonal to the intended direction of motion

$$
\delta_{n}=-\sin \left(\theta_{B}(t)\right)\left(x(t)-x_{B}(t)\right)+\cos \left(\theta_{B}(t)\right)\left(y(t)-y_{B}(t)\right)
$$

- Heading error: difference between desired and actual orientation and direction

$$
p(t)=[x(t), y(t), \theta(t), v(t)]
$$

$$
\begin{aligned}
& \delta_{\theta}=\theta(t)-\theta_{B}(t) \\
& \delta_{v}=v(t)-v_{B}(t)
\end{aligned}
$$

\rightarrow Each of these errors match the form $y_{d}(t)-y(t)$

$$
p_{B}(t)=\left[x_{B}(t), y_{B}(t), \theta_{B}(t), v_{B}(t)\right]
$$

A simple P-controller example

- Given a simple system: $\dot{y}(t)=u(t)+d(t)$

- Using proportional (P) controller:

$$
\begin{aligned}
& u(t)=-K_{P} e(t)=-K_{P}\left(y(t)-y_{d}(t)\right) \\
& \dot{y}(t)=-K_{P} y(t)+K_{P} y_{d}(t)+d(t)
\end{aligned}
$$

A simple P-controller example

- Given a simple system: $\dot{y}(t)=u(t)+d(t)$

- Using proportional (P) controller:

$$
\begin{aligned}
& u(t)=-K_{P} e(t)=-K_{P}\left(y(t)-y_{d}(t)\right) \\
& \dot{y}(t)=-K_{P} y(t)+K_{P} y_{d}(t)+d(t)
\end{aligned}
$$

- Consider constant setpoint y_{0} and disturbance $d_{s s}$

$$
\dot{y}(t)=-K_{P} y(t)+K_{P} y_{0}+d_{s s}
$$

- What is the steady state output?
- Set: $-K_{P} y(t)+K_{P} y_{0}+d_{s s}=0$
- Solve for $y_{s s}: y(t)=\frac{d_{s s}}{K_{P}}+y_{0}$

A simple P-controller example

- Given a simple system: $\dot{y}(t)=u(t)+d(t)$

- Using proportional (P) controller:

$$
\begin{aligned}
& u(t)=-K_{P} e(t)=-K_{P}\left(y(t)-y_{d}(t)\right) \\
& \dot{y}(t)=-K_{P} y(t)+K_{P} y_{d}(t)+d(t)
\end{aligned}
$$

- Consider constant setpoint y_{0} and disturbance $d_{s s}$

$$
\dot{y}(t)=-K_{P} y(t)+K_{P} y_{0}+d_{s s}
$$

- What is the steady state output?
- Set: $-K_{P} y(t)+K_{P} y_{0}+d_{s s}=0$
- Solve for $y_{s s}: y(t)=\frac{d_{S S}}{K_{P}}+y_{0}$

A simple P-controller example

- Given a simple system: $\dot{y}(t)=u(t)+d(t)$

- Consider constant setpoint y_{0} and disturbance $d_{s s}$

$$
\dot{y}(t)=-K_{P} y(t)+K_{P} y_{0}+d_{s s}
$$

- Steady state output $y_{s s}=\frac{d_{S S}}{K_{P}}+y_{0}$

A simple P-controller example

- Given a simple system: $\dot{y}(t)=u(t)+d(t)$

- Consider constant setpoint y_{0} and disturbance $d_{s s}$

$$
\dot{y}(t)=-K_{P} y(t)+K_{P} y_{0}+d_{s s}
$$

- Steady state output $y_{s s}=\frac{d_{s s}}{K_{P}}+y_{0}$
- Transient behavior:

$$
y(t)=y_{0} e^{-t / T}+y_{s s}\left(1-e^{-t / T}\right), T=1 / K_{P}
$$

- To make steady state error small, we can increase K_{P} at the expense of longer transients

Control Law

Control input is given by $u=[a, \delta]^{\top}$
where a is the acceleration and δ is the steering angle

$$
\begin{aligned}
& u=K\left[\begin{array}{l}
\delta_{s} \\
\delta_{n} \\
\delta_{\theta} \\
\delta_{v}
\end{array}\right] \\
& K=\left[\begin{array}{cccc}
K_{s} & 0 & 0 & K_{v} \\
0 & K_{n} & K_{\theta} & 0
\end{array}\right]
\end{aligned}
$$

Control Law

$$
K=\left[\begin{array}{cccc}
K_{s} & 0 & 0 & K_{v} \\
0 & K_{n} & K_{\theta} & 0
\end{array}\right]
$$

The pure-pursuit controller produced by this gain matrix performs a PD-control. It uses a PD-controller to correct along-track error.
The control on curvature is also a PDcontroller for cross-track error because δ_{θ} is related to the derivative of δ_{n}.

Summary

- Reviewed linear systems and stability of differential equations
- Looked at PID controllers as a way to regulate systems using state feedback
- Derived a waypoint following error dynamics
\rightarrow This will be needed for MP2!
- Next time: Advanced Control Topics!

