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February 20, 2024

ECE484: Principles of Safe Autonomy

 



Administrivia 
• Team formation due this week
• Upcoming due dates:

§ HW1 and MP1 due Friday 2/23
§ HW2 and MP2 due Friday 3/01
§ Project Pitches in class 3/05 and 3/07

• Bonus MP in April



Today’s Plan
• Review some differential equations and linear algebra
• Take a look at PID controllers
• Build up waypoint following using the models discussed previously



Dynamical Systems Model
Describe behavior in terms of instantaneous laws:
!" #
!# = "̇(#) = ( " # , * #

where # ∈ ℝ, " # ∈ ℝ! , * # ∈ ℝ", and (:ℝ!×ℝ" → ℝ! gives the 
dynamics / transition function
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Error Dynamics



Feedback Control



PID Controllers
• Proportional * = 0#1

• Integral * = 0$∫ 1 3 !3

• Derivative * = 0% 1̇

!! UE

!"
1
# UE

!## UE

+ U



Linear Error Dynamics



Viewing as a Second Order System
• The second order system is: 1̈ + 6&1̇ + 6'1 = 0
• In standard form, we write:

1̈ # + 29:!1̇ # + :!'1 # = 0
where 9 is the damping ratio and :! is the natural frequency
• The eigenvalues are given as:

;&,' = −9:! ±:! 9' − 1
• Note that the system is stable iff :! and 9 are positive



Second Order Dynamics: Cases
• Overdamped: ? > 1

• Roots !$ and !% are distinct
• "& # = %$&'*( + %%&'+(
• Time constant is the less negative root

• Critically damped: ? = 1
• Roots !$ and !% are equal and real
• "& # = (%$+%%#)&)*,(
• Time constant is given by 1/,+

• Underdamped: ? < 1
• Roots are complex conjugates: 

!$,% = −.,+ ± 0,+ 1 − .%
• "& # = (%$cos,-# + %% sin,-#)&).*,(



Simple Damped Spring System
! #̈ + %#̇ + '# = )

#̈ + %
! #̇ + '

!# = *

#̈ + 2,-!#̇ + -!"# = *
, damping ratio
-! natural frequency

! #̈ + %#̇ + '# = *

ℒ !#̈ + %#̇ + '# =
!/"0 / + %/0 / + '0 /

Transfer Function:
0 /
1(/) =

1
!/" + %/ + '

Poles:

/ = −% ± %" − 4!'
2!



Undamped Case: / = 0 Overdamped Case: /$ − 44! > 0

Underdamped Case: /$ − 44! < 0 With Feedback Control

Sorry – no video!



On to PID for path following



Path following control
• The path followed by a robot can be represented by a trajectory or path 

parameterized by time
à from a higher-level planner, map, or perception system

• Defines the desired instantaneous pose 6 #

7 8 = [: 8 , ; 8 , < 8 ]



Open-loop waypoint following
• We can write an open-loop controller for a robot that is naturally 

controlled via angular velocity, such as a differential-drive robot:

*),*+ # = B #
: # = "̇ # ' + Ċ # '

Ḋ #

• We can write an open-loop controller for a robot with car-like steering:

*,,*+ # = B #
E # =

"̇ # ' + Ċ # '

Ḋ #
"̇ # ' + Ċ # '



Path following control
• The path followed by a robot can be represented by a trajectory or path 

parameterized by time
à from a higher-level planner, map, or perception system

• Defines the desired instantaneous pose 6 #

7 8 = [: 8 , ; 8 , < 8 ] PlantSensor Controller

Input/waypoint

Control
!(#)

Output

Feedback

Noise Disturbance



Path following control
• Desired instantaneous pose F #
• How to define error between actual pose F- # and desired pose 
F # in the form of C% # − C(#)?

7 8 = [: 8 , ; 8 , < 8 ]

7% 8 = [:% 8 , ;% 8 , <% 8 ]



Path following control
The error vector measured vehicle coordinates 

e / = [2! / , 2" / , 2# / , 2$ / ]
[2!, 2"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

7 8 = [: 8 , ; 8 , < 8 , >(8)]

7% 8 = [:% 8 , ;% 8 , <% 8 , >%(8)]



Path following control
The error vector measured vehicle coordinates 

e / = [2! / , 2" / , 2# / , 2$ / ]
[2!, 2"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 
2! = cos 7% / 8 / − 8% / + ;<= 7% / > / − >% /

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion
2" = −sin 7% / 8 / − 8% / + AB; 7% / > / − >% /

7 8 = [: 8 , ; 8 , < 8 , >(8)]

7% 8 = [:% 8 , ;% 8 , <% 8 , >%(8)]

A&

A'



Path following control
The error vector measured vehicle coordinates 

e / = [2! / , 2" / , 2# / , 2$ / ]
[2!, 2"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 
2! = cos 7% / 8 / − 8% / + ;<= 7% / > / − >% /

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion
2" = −sin 7% / 8 / − 8% / + AB; 7% / > / − >% /

• Heading error: difference between desired and actual orientation and 
direction
2# = 7 / − 7% /
2$ = C / − C%(/)

à Each of these errors match the form >& / − >(/)

7 8 = [: 8 , ; 8 , < 8 , >(8)]

7% 8 = [:% 8 , ;% 8 , <% 8 , >%(8)]

<%

A&

A'
A(



A simple P-controller example

• Given a simple system: Ċ # = * # + ! #
• Using proportional (P) controller:

* # = −GF1 # = −GF(C # − C% # )
Ċ # = −GFC # + GFC% # + ! #



A simple P-controller example

• Given a simple system: Ċ # = * # + ! #
• Using proportional (P) controller:

* # = −GF1 # = −GF(C # − C% # )
Ċ # = −GFC # + GFC% # + ! #

• Consider constant setpoint CG and disturbance !HH
Ċ # = −GFC # + GFCG + !HH

• What is the steady state output? 
§ Set: −7B8 # + 7B8C + 9'' = 0
§ Solve for 8'': 8 # = ---

D.
+ 8C



A simple P-controller example

• Given a simple system: "̇ # = % # + ' #
• Using proportional (P) controller:

% # = −)#* # = −)#(" # − "$ # )
"̇ # = −)#" # + )#"$ # + ' #

• Consider constant setpoint "! and disturbance '%%
"̇ # = −)#" # + )#"! + '%%

• What is the steady state output? 
§ Set: −"!# $ + "!#" + &## = 0
§ Solve for ###: # $ = $))

%*
+ #"



A simple P-controller example

• Given a simple system: Ċ # = * # + ! #
• Consider constant setpoint CG and disturbance !HH

Ċ # = −GFC # + GFCG + !HH
• Steady state output CHH = %!!

I"
+ CG



A simple P-controller example

• Given a simple system: Ċ # = * # + ! #
• Consider constant setpoint CG and disturbance !HH

Ċ # = −GFC # + GFCG + !HH
• Steady state output CHH = %!!

I"
+ CG

• Transient behavior:
C # = CG1JK/M + CHH 1 − 1JK/M , H = 1/GF

• To make steady state error small, we can increase GF at the expense 
of longer transients



Control Law
Control input is given by * = J, K N

where J is the acceleration and K is the steering angle

* = G
KH
K!
KO
KP

G = GH 0 0 GP
0 G! GO 0

PlantSensor Controller

% # = [( # , * # , + # ]
Control

! # = -
.

Output

Feedback

Noise Disturbance



Control Law

G = GH 0 0 GP
0 G! GO 0

The pure-pursuit controller produced by this 
gain matrix performs a PD-control. It uses a 
PD-controller to correct along-track error. 
The control on curvature is also a PD-
controller for cross-track error because KO is 
related to the derivative of K!.



Summary
• Reviewed linear systems and stability of differential equations
• Looked at PID controllers as a way to regulate systems using state 

feedback
• Derived a waypoint following error dynamics

àThis will be needed for MP2!
• Next time: Advanced Control Topics!


