
Lecture 10: Control II
Professor Katie Driggs-Campbell

February 20, 2024

ECE484: Principles of Safe Autonomy



Administrivia 
• Team formation due this week
• Upcoming due dates:

§ HW1 and MP1 due Friday 2/23
§ HW2 and MP2 due Friday 3/01
§ Project Pitches in class 3/05 and 3/07

• Bonus MP in April



Today’s Plan

• Review some differential equations and linear algebra
• Take a look at PID controllers
• Build up waypoint following using the models discussed previously



Dynamical Systems Model

Describe behavior in terms of instantaneous laws:
𝑑𝑥 𝑡
𝑑𝑡

= 𝑥̇(𝑡) = 𝑓 𝑥 𝑡 , 𝑢 𝑡

where 𝑡 ∈ ℝ, 𝑥 𝑡 ∈ ℝ! , 𝑢 𝑡 ∈ ℝ", and 𝑓:ℝ!×ℝ" → ℝ! gives the 
dynamics / transition function



Recall (1)



Recall (2)



̇𝑥!
̇𝑥"

= 
−1/4 −2/5
3 −1/4

𝑥"
𝑥!

λ1=−0.25−i1.10
λ2=−0.25+i1.10

Examples



̇𝑥!
̇𝑥"

= 
−1/4 −2/5
3 −1/4

𝑥"
𝑥!

λ1=−0.25−i1.10
λ2=−0.25+i1.10

̇𝑥!
̇𝑥"

= 
1/4 −2/5
3 −1/4

𝑥"
𝑥!

λ1=+i0.1066
λ2=-i0.1066

̇𝑥!
̇𝑥"

= 
1/2 −2/5
3 −1/4

𝑥"
𝑥!

λ1=0.125+i1.029
λ2=-0.125-i1.029

Examples



̇𝑥!
̇𝑥"

= 
−1/4 −2/5
3 −1/4

𝑥"
𝑥!

λ1=−0.25−i1.10
λ2=−0.25+i1.10

̇𝑥!
̇𝑥"

= 
1/4 −2/5
3 −1/4

𝑥"
𝑥!

λ1=+i0.1066
λ2=-i0.1066

̇𝑥!
̇𝑥"

= 
1/2 −2/5
3 −1/4

𝑥"
𝑥!

λ1=0.125+i1.029
λ2=-0.125-i1.029

Examples ̇𝑥!
̇𝑥"

= 
−1/4 −2/5
3 −1/2

𝑥"
𝑥!

λ1=−0.375−i1.088
λ2=−0.375+i1.088



Error Dynamics



Feedback Control



PID Controllers
• Proportional 𝑢 = 𝑘#𝑒

• Integral 𝑢 = 𝑘$∫ 𝑒 𝜏 𝑑𝜏

• Derivative 𝑢 = 𝑘% 𝑒̇

𝑘! UE

𝑘"
1
𝑠

UE

𝑘#𝑠 UE

+ U



Linear Error Dynamics



Viewing as a Second Order System

• The second order system is: 𝑒̈ + 𝑐&𝑒̇ + 𝑐'𝑒 = 0
• In standard form, we write:

𝑒̈ 𝑡 + 2𝜉𝜔!𝑒̇ 𝑡 + 𝜔!'𝑒 𝑡 = 0
where 𝜉 is the damping ratio and 𝜔! is the natural frequency
• The eigenvalues are given as:

𝜆&,' = −𝜉𝜔! ±𝜔! 𝜉' − 1
• Note that the system is stable iff 𝜔! and 𝜉 are positive



Second Order Dynamics: Cases
• Overdamped: 𝜁 > 1
• Roots 𝑠$ and 𝑠% are distinct
• 𝜃& 𝑡 = 𝑐$𝑒'*( + 𝑐%𝑒'+(
• Time constant is the less negative root

• Critically damped: 𝜁 = 1
• Roots 𝑠$ and 𝑠% are equal and real
• 𝜃& 𝑡 = (𝑐$+𝑐%𝑡)𝑒)*,(
• Time constant is given by 1/𝜔+

• Underdamped: 𝜁 < 1
• Roots are complex conjugates: 

𝑠$,% = −𝜁𝜔+ ± 𝑗𝜔+ 1 − 𝜁%

• 𝜃& 𝑡 = (𝑐$cos𝜔-𝑡 + 𝑐% sin𝜔-𝑡)𝑒).*,(



Simple Damped Spring System
𝑚 𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝐹

𝑥̈ +
𝑏
𝑚 𝑥̇ +

𝑘
𝑚𝑥 = 𝑢

𝑥̈ + 2𝜉𝜔!𝑥̇ + 𝜔!"𝑥 = 𝑢

𝜉 damping ratio
𝜔! natural frequency

𝑚 𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 = 𝑢

ℒ 𝑚𝑥̈ + 𝑏𝑥̇ + 𝑘𝑥 =

𝑚𝑠"𝑋 𝑠 + 𝑏𝑠𝑋 𝑠 + 𝑘𝑋 𝑠
Transfer Function:

𝑋 𝑠
𝑈(𝑠) =

1
𝑚𝑠" + 𝑏𝑠 + 𝑘

Poles:

𝑠 =
−𝑏 ± 𝑏" − 4𝑚𝑘

2𝑚



Undamped Case: 𝑏 = 0 Overdamped Case: 𝑏$ − 4𝑚𝑘 > 0

Underdamped Case: 𝑏$ − 4𝑚𝑘 < 0 With Feedback Control

Sorry – no video!



On to PID for path following



Path following control
• The path followed by a robot can be represented by a trajectory or path 

parameterized by time
à from a higher-level planner, map, or perception system

• Defines the desired instantaneous pose 𝑝 𝑡

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]



Open-loop waypoint following
• We can write an open-loop controller for a robot that is naturally 

controlled via angular velocity, such as a differential-drive robot:

𝑢),*+ 𝑡 = 𝑣 𝑡
𝜔 𝑡 = 𝑥̇ 𝑡 ' + 𝑦̇ 𝑡 '

𝜃̇ 𝑡

• We can write an open-loop controller for a robot with car-like steering:

𝑢,,*+ 𝑡 = 𝑣 𝑡
𝜅 𝑡 =

𝑥̇ 𝑡 ' + 𝑦̇ 𝑡 '

𝜃̇ 𝑡
𝑥̇ 𝑡 ' + 𝑦̇ 𝑡 '



Path following control
• The path followed by a robot can be represented by a trajectory or path 

parameterized by time
à from a higher-level planner, map, or perception system

• Defines the desired instantaneous pose 𝑝 𝑡

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ] PlantSensor Controller

Input/waypoint

Control
𝑢(𝑡)

Output

Feedback

Noise Disturbance



Path following control

• Desired instantaneous pose 𝑝 𝑡
• How to define error between actual pose 𝑝- 𝑡 and desired pose 
𝑝 𝑡 in the form of 𝑦% 𝑡 − 𝑦(𝑡)?

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

𝑝% 𝑡 = [𝑥% 𝑡 , 𝑦% 𝑡 , 𝜃% 𝑡 ]



Path following control
The error vector measured vehicle coordinates 

e 𝑡 = [𝛿! 𝑡 , 𝛿" 𝑡 , 𝛿# 𝑡 , 𝛿$ 𝑡 ]

[𝛿!, 𝛿"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝% 𝑡 = [𝑥% 𝑡 , 𝑦% 𝑡 , 𝜃% 𝑡 , 𝑣%(𝑡)]



Path following control
The error vector measured vehicle coordinates 

e 𝑡 = [𝛿! 𝑡 , 𝛿" 𝑡 , 𝛿# 𝑡 , 𝛿$ 𝑡 ]

[𝛿!, 𝛿"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 
𝛿! = cos 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑠𝑖𝑛 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion
𝛿" = −sin 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑐𝑜𝑠 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝% 𝑡 = [𝑥% 𝑡 , 𝑦% 𝑡 , 𝜃% 𝑡 , 𝑣%(𝑡)]

𝛿&

𝛿'



Path following control
The error vector measured vehicle coordinates 

e 𝑡 = [𝛿! 𝑡 , 𝛿" 𝑡 , 𝛿# 𝑡 , 𝛿$ 𝑡 ]

[𝛿!, 𝛿"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 
𝛿! = cos 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑠𝑖𝑛 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion
𝛿" = −sin 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑐𝑜𝑠 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

• Heading error: difference between desired and actual orientation and 
direction
𝛿# = 𝜃 𝑡 − 𝜃% 𝑡
𝛿$ = 𝑣 𝑡 − 𝑣%(𝑡)

à Each of these errors match the form 𝑦& 𝑡 − 𝑦(𝑡)

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝% 𝑡 = [𝑥% 𝑡 , 𝑦% 𝑡 , 𝜃% 𝑡 , 𝑣%(𝑡)]

𝜃%

𝛿&

𝛿'
𝛿(



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Using proportional (P) controller:

𝑢 𝑡 = −𝐾F𝑒 𝑡 = −𝐾F(𝑦 𝑡 − 𝑦% 𝑡 )
𝑦̇ 𝑡 = −𝐾F𝑦 𝑡 + 𝐾F𝑦% 𝑡 + 𝑑 𝑡



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Using proportional (P) controller:

𝑢 𝑡 = −𝐾F𝑒 𝑡 = −𝐾F(𝑦 𝑡 − 𝑦% 𝑡 )
𝑦̇ 𝑡 = −𝐾F𝑦 𝑡 + 𝐾F𝑦% 𝑡 + 𝑑 𝑡

• Consider constant setpoint 𝑦G and disturbance 𝑑HH
𝑦̇ 𝑡 = −𝐾F𝑦 𝑡 + 𝐾F𝑦G + 𝑑HH

• What is the steady state output? 
§ Set: −𝐾B𝑦 𝑡 + 𝐾B𝑦C + 𝑑'' = 0
§ Solve for 𝑦'': 𝑦 𝑡 = ---

D.
+ 𝑦C



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Using proportional (P) controller:

𝑢 𝑡 = −𝐾#𝑒 𝑡 = −𝐾#(𝑦 𝑡 − 𝑦$ 𝑡 )
𝑦̇ 𝑡 = −𝐾#𝑦 𝑡 + 𝐾#𝑦$ 𝑡 + 𝑑 𝑡

• Consider constant setpoint 𝑦! and disturbance 𝑑%%
𝑦̇ 𝑡 = −𝐾#𝑦 𝑡 + 𝐾#𝑦! + 𝑑%%

• What is the steady state output? 
§ Set: −𝐾!𝑦 𝑡 + 𝐾!𝑦" + 𝑑## = 0
§ Solve for 𝑦##: 𝑦 𝑡 = $))

%*
+ 𝑦"



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Consider constant setpoint 𝑦G and disturbance 𝑑HH

𝑦̇ 𝑡 = −𝐾F𝑦 𝑡 + 𝐾F𝑦G + 𝑑HH
• Steady state output 𝑦HH =

%!!
I"
+ 𝑦G



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Consider constant setpoint 𝑦G and disturbance 𝑑HH

𝑦̇ 𝑡 = −𝐾F𝑦 𝑡 + 𝐾F𝑦G + 𝑑HH
• Steady state output 𝑦HH =

%!!
I"
+ 𝑦G

• Transient behavior:
𝑦 𝑡 = 𝑦G𝑒JK/M + 𝑦HH 1 − 𝑒JK/M , 𝑇 = 1/𝐾F

• To make steady state error small, we can increase 𝐾F at the expense 
of longer transients



Control Law

Control input is given by 𝑢 = 𝑎, 𝛿 N

where 𝑎 is the acceleration and 𝛿 is the steering angle

𝑢 = 𝐾

𝛿H
𝛿!
𝛿O
𝛿P

𝐾 = 𝐾H 0 0 𝐾P
0 𝐾! 𝐾O 0

PlantSensor Controller

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

Control
𝑢 𝑡 = 𝑎

𝛿

Output

Feedback

Noise Disturbance



Control Law

𝐾 = 𝐾H 0 0 𝐾P
0 𝐾! 𝐾O 0

The pure-pursuit controller produced by this 
gain matrix performs a PD-control. It uses a 
PD-controller to correct along-track error. 
The control on curvature is also a PD-
controller for cross-track error because 𝛿O is 
related to the derivative of 𝛿!.



Summary

• Reviewed linear systems and stability of differential equations
• Looked at PID controllers as a way to regulate systems using state 

feedback
• Derived a waypoint following error dynamics

àThis will be needed for MP2!

• Next time: Advanced Control Topics!


