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Lecture 10: Control II

Professor Katie Driggs-Campbell
February 20, 2024

ECE484: Principles of Safe Autonomy
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Administrivia
Team formation due this week

Upcoming due dates:
HW1 and MP1 due Friday 2/23
HW2 and MP2 due Friday 3/01
Project Pitches in class 3/05 and 3/07

Bonus MP in April
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Today’s Plan

Review some differential equations and linear algebra
Take a look at PID controllers
Build up waypoint following using the models discussed previously



4 o

Dynamical Systems Model

Describe behavior in terms of instantaneous laws:
dx(t) .
=X =f (x (), u(t))

wheret € R, x(t) € R, u(t) € R™, and f: R"XR™ — R™" gives the
dynamics / transition function
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Recall (2)
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Error Dynamics
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Feedback Control




PID Controllers

Proportional u=kpe

E—> k, —>U
— —

Integral u=k;[e(®)dr

lﬁ 1
E— ki — U

Derivative u=kye

E—> kys =—>U
 ———




Linear Error Dynamics
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Viewing as a Second Order System

The second order system is: € + c;e + c,e = 0
In standard form, we write:
é(t) + 2éw,é(t) + w2e(t) =0
where ¢ is the damping ratio and w,, is the natural frequency
The eigenvalues are given as:

Mz = —§wp £ wny/E2 — 1
Note that the system is stable iff w,, and ¢ are positive




Second Order Dynamics: Cases
* Overdamped: ¢ > 1

. . [m(s)] [m(s)] Im(s)]
* Roots s; and s, are distinct e iy
o He(t) = C1851t + Czeszt 2. s 1,2 W‘,l:x\
* Time constant is the less negative root Tt 1t |ReGs | ReGs (wn | Re(s
* Critically damped: ( =1

overdamped (( > 1) critically damped (( = 1) underdamped ({ < 1)

* Roots s; and s, are equal and real
* 0,(t) = (citcyt)e™Ont ;
* Time constant is given by 1/wy, &
* Underdamped: ( <1
* Roots are complex conjugates: — |
. underdamped shorter unstable

51,2 — —Ca)n i_] settling time

« 0,(t) = (cycos wyt + ¢y sin wyt)e ~$@nt

o

‘ lncreasing Im(s)

overshoot,
overdamped , S
Sl oscillation
_ critically damped

-

> Re(s)
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Simple Damped Spring System

mix+bx+kx=F

., bk
X+—X+—X=U
m m

X+ 28wex + wix = u

¢ damping ratio
wq natural frequency

mix+bx+ kx =u

L{mi + bx + kx} =

ms?X(s) + bsX(s) + kX(s)
Transfer Function:

X(s) 1
U(s) ms2+bs+k
Poles:
—b + Vb2 — 4mk
S =
2m



Undamped Case: b = 0 Overdamped Case: b? — 4mk > 0

Step Response Step Response

Step Response Spring

s

AL _ptelamye .Sorry — no video!
/ L




On to PID for path following
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Path following control

The path followed by a robot can be represented by a trajectory or path
parameterized by time
from a higher-level planner, map, or perception system

Defines the desired instantaneous pose p(t)

_/—:—
-@
-

-
'

7

Y
% o) = [x(), y(£), 6()]
-



Open-loop waypoint following

We can write an open-loop controller for a robot that is naturally
controlled via angular velocity, such as a differential-drive robot:

v(t)] _ Ja‘c(t)2+y'(t)2]

ua),OL(t) — [(l)(t) —

6(t)
We can write an open-loop controller for a robot with car-like steering:
()2 + y(6)?
Uy oy (£) = [”(t) — a(t)
K,OL K(t)
V()2 + y()2.

4o



Path following control

The path followed by a robot can be represented by a trajectory or path
parameterized by time
from a higher-level planner, map, or perception system

Defines the desired instantaneous pose p(t)

Noise Input/waypoint

/_: -
_-@-
b d
7
7 Control

Feedback

2
’, p(t) = [X(t),y(t), Q(t)] Sensor Controller £0)
-

Output

Disturbance

Piant
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Path following control

Desired instantaneous pose p(t)

How to define error between actual pose pg(t) and desired pose
p(t) in the form of y,;(t) — y(t)?

p(©) = [x(©,y©,60)]

0/

pp(t) = [x5(t), yp(t), 05(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [65(¢), 8,(t), 6g(2), 6, (1)]

|65, 6,,] define the coordinate errors in the vehicle’s reference frame:
along track error and cross track error

4o

p(t) = [x(0),y(t),0(0), v(t)]

’

pp(t) = [xp(t), yp(t), O5(t), vp(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [65(¢), 8,(t), 6g(2), 6, (1)]

|65, 6,,] define the coordinate errors in the vehicle’s reference frame:
along track error and cross track error

distance ahead or behind the target in the
instantaneous direction of motion.

§s = cos(05(1)) (x(t) — x5(1)) + sin(05 (1)) (y(©) — y5(©))

portion of the position error orthogonal to the
intended direction of motion

8y = —sin(05 (1)) (x(£) — x5(8)) + cos(05(t)) (y(£) — yz(D))

4 o

p(t) = [x(0),y(t),0(0), v(t)]

’

pp(t) = [xp(t), yp(t), O5(t), vp(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [65(¢), 8,(t), 6g(2), 6, (1)]

|65, 6,,] define the coordinate errors in the vehicle’s reference frame:  p(t) = [x(¢t), y(t), 0(t), v(t)]
along track error and cross track error 4

’

distance ahead or behind the target in the """/5‘9
instantaneous direction of motion. | @/
5 = cos(HB(t)) (x(t) — XB(t)) + Sin(QB(t)) (}’(t) — }’B(t)) """ :

o
.

L n®
lllllll

portion of the position error orthogonal to the
intended direction of motion

8y = —sin(05 (1)) (x(£) — x5(8)) + cos(05(t)) (y(£) — yz(D))

Heading error: difference between desired and actual orientation and
direction PB (t) — [XB (t), YB (t)’ QB (t)’ Up (t)]

b = 0(t) — 05(t)
6y, = v(t) — vp(t)

Each of these errors match the form y;(t) — y(t)

4o
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A simple P-controller example

Given a simple system: y(t) = u(t) + d(t)
Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — ya(t))
y(t) = —Kpy(t) + Kpyq(t) + d(¢)

u(t)

d(t)

PPPPP

y(®) = h(x(t))
ya(t)

e(t) =y(t) —ya(t)
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A simple P-controller example

u(t)

Given a simple system: y(t) = u(t) + d(t)

Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — ya(t))
y(t) = —Kpy(t) + Kpyq(t) + d(t)

Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dss

What is the steady state output?
Set: —pr(t) + pro + dSS =0

Solve for y..: y(t) = % + Vo
P

d(t)

PPPPP

y(®) = h(x(t))
ya(t)

e(t) =y(t) —ya(t)
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A simple P-controller example
u(t)
Given a simple system: y(t) = u(t) + d(t)
Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — yq(t))
y(t) = —Kpy(t) + Kpy,(t) + d(t)
Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dsg
What is the steady state output?
Set: —pr(t) + pro + dSS =0
Solve for y..: y(t) = f{—s: + Vo

d(t)

y(®) = h(x(t))
ya(t)

e(t) =y(t) —ya(t)



d(t)

A simple P-controller example . l

u(t) (© = h(x()

ya(t)

Given a simple system: y(t) = u(t) + d(t) — e
Consider constant setpoint y, and disturbance d.

y(t) = —Kpy(t) + Kpyo + dss
Steady state output y,. = i—S: + Vo

4 o
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d(t)

A simple P-controller example . l

u(t) (© = h(x()

ya(t)
e(t) =y()—yq(t)

Given a simple system: y(t) = u(t) + d(t)

Consider constant setpoint y, and disturbance d.
y(t) = —Kpy(t) + Kpyo + ds;

Steady state output y,. = i—s: + Vo

Transient behavior:
Y(t) — YOe_t/T + y$5(1 — e_t/T); T =1/Kp

To make steady state error small, we can increase Kp at the expense
of longer transients
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Control Law

Control input is given by u = [a, §]"
where a is the acceleration and ¢ is the steering angle

_65_

577, Nose p(t) =
u=K 5,

'517 i Feedback
y_ [Ks 0 0 Kv]

0 K, Ky O

[x(2), y(8), 6(t)]
l Control
u(®) = [4]

Controller

Output

Disturbance

|
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Control Law

K:[KS 0 0 K,
0 K, Ky O

The pure-pursuit controller produced by this
gain matrix performs a PD-control. It uses a
PD-controller to correct along-track error.

The control on curvature is also a PD-
controller for cross-track error because dg is
related to the derivative of 4,,.




4 o

Summary

Reviewed linear systems and stability of differential equations

Looked at PID controllers as a way to regulate systems using state
feedback

Derived a waypoint following error dynamics
This will be needed for MP2!

Next time: Advanced Control Topics!



