Lecture 9: Control I.5

Professor Katie Driggs-Campbell

February 15, 2024

ECE484: Principles of Safe Autonomy

Administrivia

- Project Intros
 - 2/13 Field trip 1 to high bay to see the GEM

> 1232 CSL Studia

- 2/15 Field trip 2 to see F1tenth cars ____
- 2/20 Simulation project walkthrough
- MP2 released Friday 2/16
- Upcoming due dates:
 - HW1 and MP1 due Friday 2/23
 - HW2 and MP2 due Friday 3/01
 - Project Pitches in class 3/05 and 3/07
- Bonus MP in April

Simple vehicle model: Dubin's car

Key assumptions

- Front and rear wheel in the plane in a stationary coordinate system
- $\hfill\blacksquare$ Steering input, front wheel steering angle δ
- No slip: wheels move only in the direction of the plane they reside in
- Zeroing out the accelerations perpendicular to the plane in which the wheels reside, we can derive simple equations

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 2016. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles 1 (1): 33–55.

Dubin's Car

 $\dot{x} = U \cos \Theta$ $\dot{y} = U \sin \Theta$ $\dot{\theta} = \sqrt{2} \tan \delta$

Many more advanced models...

[Kinematic] Bicycle Model

Image Credit and Reference: J.P. Timings and D.J. Cole. "Minimum maneuver time calculation using convex optimization." Journal of Dynamic Systems, Measurement, and Control 135.3 (2013).

Image Credit and Reference: J.K. Subosits and J.C. Gerdes. "Impacts of Model Fidelity on Trajectory Optimization for Autonomous Vehicles in Extreme Maneuvers." IEEE Transactions on Intelligent Vehicles, 2021.

[Dynamic] Tire Models

Dynamical system models

	Dubin's car model	
$\dot{v} = a$		Speed
$\frac{ds_x}{dt} =$	$v\cos(\psi)$	Horizontal position
$\frac{ds_y}{dt} =$	$v\sin(\psi)$	Vertical position
$\frac{d\delta}{dt} = \frac{1}{2}$	v_{δ}	Steering angle
$\frac{d\psi}{dt} = \frac{1}{2}$	$\frac{v}{l}$ tan(δ)	Heading angle

Nonlinear dynamics

Generally, nonlinear ODEs do not have closed form solutions!

Physical plant			
$\frac{dx}{dt} = f(x, u)$	System dynamics		
x[t+1] = f(x[t], u[t])			
$x = [v, s_x, s_y, \delta, \psi]$	State variables		
$u = [a, v_{\delta}]$	Control inputs		

Nonlinear *hybrid* dynamics

Physical plant
$$\frac{dx}{dt} = f(x, u)$$
System dynamics $x[t+1] = f(x[t], u[t])$ $x = [v, s_x, s_y, \delta, \psi]$ State variables $u = [a, v_{\delta}]$ Control inputs

Typical system models

Nonlinear <u>hybrid</u> dynamics

Interaction between computation and physics can lead to unexpected behaviors

Describe behavior in terms of instantaneous laws:

$$\frac{dx(t)}{dt} = \dot{x}(t) = f(x(t), u(t)) = Ax + Bu$$
where $t \in \mathbb{R}, x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$, and $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ gives the dynamics / transition function

$$x_1 \to x_2$$

$$x_2 \to x_3$$

$$x_1 \to x_4$$

$$x_2 \to x_4$$

$$x_3 \to x_4$$

$$x_4 \to$$

((100)

Summary

- Dynamical systems models allow us to reason about low-level behaviors of systems and determine what is and is not feasible
 - Typically required to design controllers!
- Discussed a few types of models from simple to complex
- Introduced error dynamics as a way to think about designing controllers
- *Next time:* Look at simple PID control design for trajectory following

