Lecture 8: Control I

Professor Katie Driggs-Campbell

February 8, 2024

ECE484: Principles of Safe Autonomy

Administrivia

- Field trips next week!
 - 2/13 Field trip 1 to high bay to see the GEM
 - 2/15 Field trip 2 to see F1tenth cars
 - 2/20 Simulation project walkthrough
- No office hours next week (Tues. 2/13)
- MP1 released Friday 2/9
- Upcoming due dates:
 - HW0 and MP0 due Friday 2/9
 - "Demos" in lab sections
 - HW1 and MP1 due Friday 2/23

Field Trip to High Bay

Address: 201 St Mary's Rd (near I-Hotel) Two sessions:

- 9:30am lab sections AB1 & AB2
- 10:10am lab sections AB4 & AB5
- AB3 can attend either!

Indoor and outdoor tour – please dress appropriately!

Autonomous GEM Vehicle

Today's Plan

- What's a model?
- Planning and Control Motivation
 - Open-loop control
- Vehicle Models
 - How to design your model
 - Dubin's Car
 - Advanced Models: bicycle, tire dynamics

Typical planning and control modules

- Global navigation and planner
 - Find paths from source to destination with static obstacles
 - Algorithms: Graph search, Dijkstra, Sampling-based planning
 - Time scale: Minutes
 - Look ahead: Destination
 - Output: reference center line, semantic commands
- Local planner
 - Dynamically feasible trajectory generation
 - Dynamic planning w.r.t. obstacles
 - Time scales: 10 Hz
 - Look ahead: Seconds
 - Output: Waypoints, high-level actions, directions / velocities
- Controller
 - Waypoint follower using steering, throttle
 - Algorithms: PID control, MPC, Lyapunov-based controller
 - Lateral/longitudinal control
 - Time scale: 100 Hz
 - Look ahead: current state
 - Output: low-level control actions

What is control?

- A means of regulating or limiting something
- Algorithms (or process) for manipulating a system to achieve to desired value

Image Credit: Justas Galaburda and Vincent Mokuenko Image Credit: FreeCAD

Basic intuition: if u>va, want input Jua if v<Vd, want input? if UZVd, want small input -> look at errors! Q= V4-~

Complex control tasks: DARPA Robotics Challenge

- Robot drives the vehicle through the course
- Robot gets out of the vehicle and travels dismounted out of the end zone

First: Come up with a model!

For some common AV tasks, what are the desired behaviors, requirements of the system, actions/ inputs? MP0 has a very simple model. How can it be improved?

task: staying in lane actions: steering angle assumption: const vel

Coordinate Systems and Configurations

Dynamical Systems Model
Describe behavior in terms of instantaneous laws:

$$\frac{dx(t)}{dt} = \dot{x}(t) = f(x(t), u(t)) \qquad x[t+1] = f(x[t], u[t])$$
where $t \in \mathbb{R}, x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$, and $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ gives the dynamics / transition function
 $\dot{x}_1 = \Theta, \quad \dot{x}_2 = \Theta = \dot{x}_1$
 $\dot{x}_2 = \left[\begin{array}{c} \dot{x}_2 \\ \dot{x}_2 \end{array} \right] = \left[\begin{array}{c} \dot{x}_2 \\ \dot{x}_2 \end{array} \right]$

((100)

Example: Differential Drive Robot

length l

Instaneous Center of Curvature [Iccx] = [X - Rsin0] Iccy] - Rcoo6]

$$V_{R} = \omega (R + \frac{2}{2})$$

$$V_{L} = \omega (R - \frac{1}{2})$$

$$R = \frac{1}{2} \cdot \frac{(\nu_{R} + \nu_{L})}{(\nu_{R} - \nu_{L})}$$

W= UR-VL

Simple vehicle model: Dubin's car

Key assumptions

- Front and rear wheel in the plane in a stationary coordinate system
- $\hfill\blacksquare$ Steering input, front wheel steering angle δ
- No slip: wheels move only in the direction of the plane they reside in
- Zeroing out the accelerations perpendicular to the plane in which the wheels reside, we can derive simple equations

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 2016. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles 1 (1): 33–55.

Dubin's Car

 $\dot{x} = v \cdot cos\Theta$ $\dot{y} = v \cdot sin\Theta$ $\dot{\Theta} = \dot{y} + an\delta$

Many more advanced models...

[Kinematic] Bicycle Model

Image Credit and Reference: J.P. Timings and D.J. Cole. "Minimum maneuver time calculation using convex optimization." Journal of Dynamic Systems, Measurement, and Control 135.3 (2013).

Image Credit and Reference: J.K. Subosits and J.C. Gerdes. "Impacts of Model Fidelity on Trajectory Optimization for Autonomous Vehicles in Extreme Maneuvers." IEEE Transactions on Intelligent Vehicles, 2021.

[Dynamic] Tire Models

Dynamical system models

	Dubin's car model	
$\dot{v} = a$		Speed
$\frac{ds_x}{dt} =$	$v\cos(\psi)$	Horizontal position
$\frac{ds_y}{dt} =$	$v\sin(\psi)$	Vertical position
$\frac{d\delta}{dt} = \frac{1}{2}$	v_{δ}	Steering angle
$\frac{d\psi}{dt} = \frac{1}{2}$	$\frac{v}{l}$ tan(δ)	Heading angle

Nonlinear dynamics

Generally, nonlinear ODEs do not have closed form solutions!

Physical plant			
$\frac{dx}{dt} = f(x, u)$	System dynamics		
x[t+1] = f(x[t], u[t])			
$x = [v, s_x, s_y, \delta, \psi]$	State variables		
$u = [a, v_{\delta}]$	Control inputs		

Nonlinear *hybrid* dynamics

Physical plant
$$\frac{dx}{dt} = f(x, u)$$
System dynamics $x[t+1] = f(x[t], u[t])$ $x = [v, s_x, s_y, \delta, \psi]$ State variables $u = [a, v_{\delta}]$ Control inputs

Typical system models

Nonlinear <u>hybrid</u> dynamics

Interaction between computation and physics can lead to unexpected behaviors

Summary

- Dynamical systems models allow us to reason about low-level behaviors of systems and determine what is and is not feasible
 - Typically required to design controllers!
- Discussed a few types of models from simple to complex
- *Next time:* Look at simple PID control design for trajectory following

Extra Slides

An aside: Coordinate transformations Rotation matrix

The following matrix rotates a vector [x, y] counter-clockwise by an angle of θ

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

That is:

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

Derivation

 $x' = r\cos(\beta + \theta) = r(\cos\beta\cos\theta - \sin\theta\sin\beta)$ $= r\cos\beta\cos\theta - r\sin\theta\sin\beta$ $= x\cos\theta - y\sin\theta$

Path following control

- The path followed by a robot can be represented by a *trajectory or path* parameterized by time
 - ightarrow from a higher-level planner
- Defines the desired instantaneous pose p(t)

