Lecture 8: Control I

Professor Katie Driggs-Campbell February 8, 2024

ECE484: Principles of Safe Autonomy

Administrivia

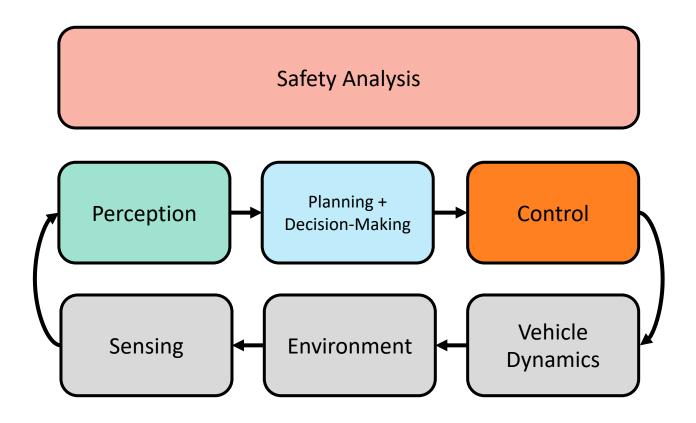
- Field trips next week!
 - 2/13 Field trip 1 to high bay to see the GEM
 - 2/15 Field trip 2 to see F1tenth cars
 - 2/20 Simulation project walkthrough
- No office hours next week (Tues. 2/13)
- MP1 released Friday 2/9
- Upcoming due dates:
 - HW0 and MP0 due Friday 2/9
 - "Demos" in lab sections
 - HW1 and MP1 due Friday 2/23

Field Trip to High Bay

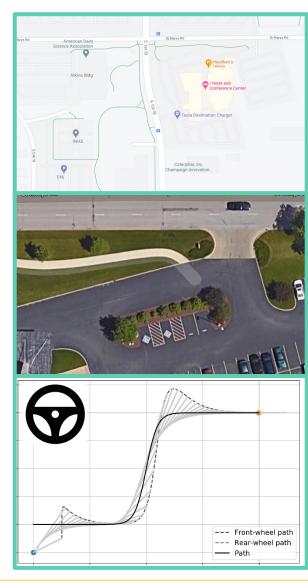
Address: 201 St Mary's Rd (near I-Hotel)
Two sessions:

- 9:30am lab sections AB1 & AB2
- 10:10am lab sections AB4 & AB5
- AB3 can attend either!

Indoor and outdoor tour – please dress appropriately!



Autonomous GEM Vehicle


Today's Plan

- What's a model?
- Planning and Control Motivation
 - Open-loop control
- Vehicle Models
 - How to design your model
 - Dubin's Car
 - Advanced Models: bicycle, tire dynamics

Typical planning and control modules

- Global navigation and planner
 - Find paths from source to destination with static obstacles
 - Algorithms: Graph search, Dijkstra, Sampling-based planning
 - Time scale: Minutes
 - Look ahead: Destination
 - Output: reference center line, semantic commands
- Local planner
 - Dynamically feasible trajectory generation
 - Dynamic planning w.r.t. obstacles
 - Time scales: 10 Hz
 - Look ahead: Seconds
 - Output: Waypoints, high-level actions, directions / velocities
- Controller
 - Waypoint follower using steering, throttle
 - Algorithms: PID control, MPC, Lyapunov-based controller
 - Lateral/longitudinal control
 - Time scale: 100 Hz
 - Look ahead: current state
 - Output: low-level control actions

What is control?

- A means of regulating or limiting something
- Algorithms (or process) for manipulating a system to achieve to desired value

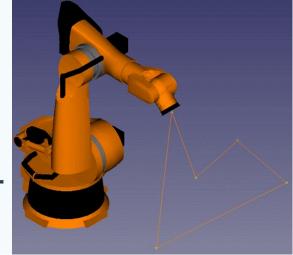
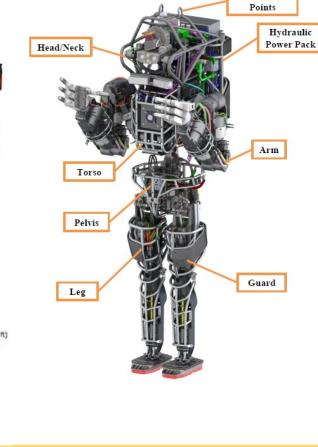
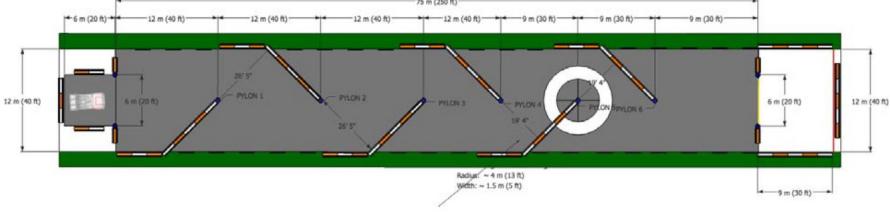


Image Credit: Justas Galaburda and Vincent Mokuenko

Image Credit: FreeCAD

Open-Loop Example

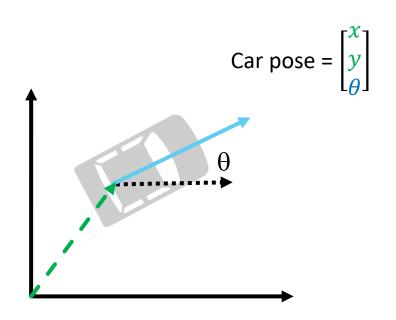

Closed-Loop Example

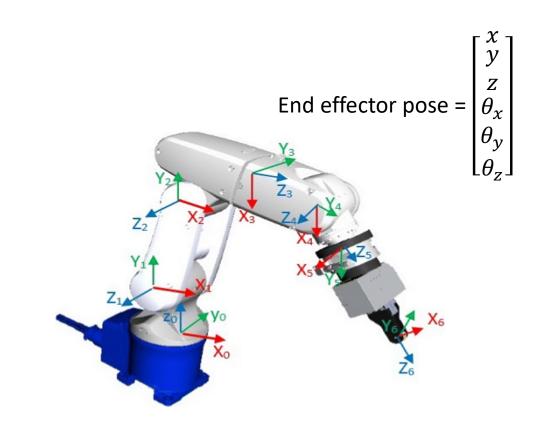

Complex control tasks: DARPA Robotics Challenge

Robot drives the vehicle through the course

 Robot gets out of the vehicle and travels dismounted out of the end zone

Hoist Mount


First: Come up with a model!


For some common AV tasks, what are the desired behaviors, requirements of the system, actions/inputs?

MPO has a very simple model. How can it be improved?

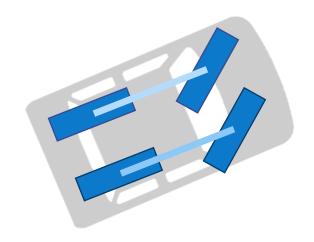
Coordinate Systems and Configurations

Dynamical Systems Model

Describe behavior in terms of instantaneous laws:

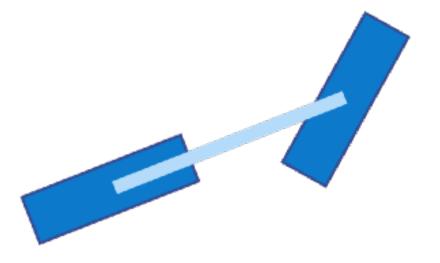
$$\frac{dx(t)}{dt} = \dot{x}(t) = f(x(t), u(t))$$

where $t \in \mathbb{R}$, $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, and $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ gives the dynamics / transition function



Example: Differential Drive Robot

Simple vehicle model: Dubin's car


- Key assumptions
 - Front and rear wheel in the plane in a stationary coordinate system
 - lacktriangleright Steering input, front wheel steering angle δ
 - No slip: wheels move only in the direction of the plane they reside in
- Zeroing out the accelerations perpendicular to the plane in which the wheels reside, we can derive simple equations

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 2016. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles 1 (1): 33–55.

Dubin's Car

Many more advanced models...

[Kinematic] Bicycle Model

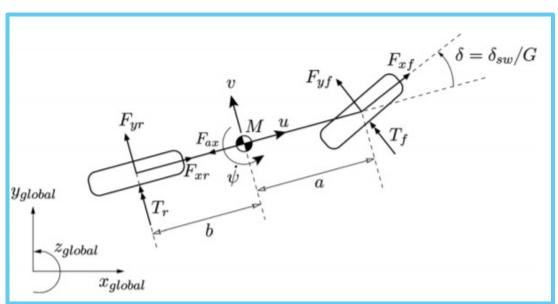


Image Credit and Reference: J.P. Timings and D.J. Cole. "Minimum maneuver time calculation using convex optimization." Journal of Dynamic Systems, Measurement, and Control 135.3 (2013).

[Dynamic] Tire Models

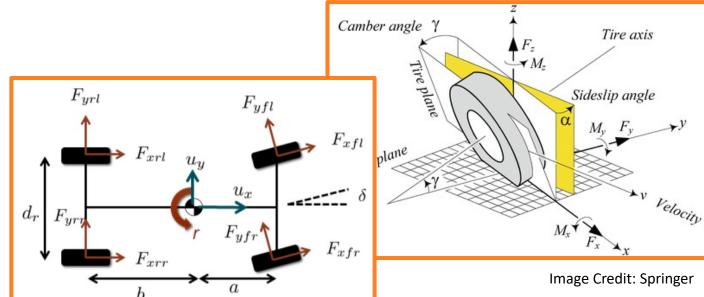
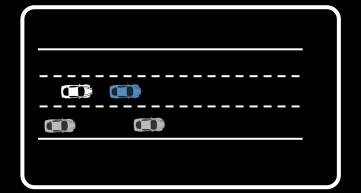



Image Credit and Reference: J.K. Subosits and J.C. Gerdes. "Impacts of Model Fidelity on Trajectory Optimization for Autonomous Vehicles in Extreme Maneuvers." IEEE Transactions on Intelligent Vehicles, 2021.

Dynamical system models

Nonlinear dynamics

Generally, nonlinear ODEs do not have closed form solutions!

Dubin's car model

$$\dot{v} = a$$

Speed

$$\frac{ds_x}{dt} = v\cos(\psi)$$

Horizontal position

$$\frac{ds_y}{dt} = v\sin(\psi)$$

Vertical position

$$\frac{d\delta}{dt} = v_{\delta}$$

Steering angle

$$\frac{d\psi}{dt} = \frac{v}{l} \tan(\delta)$$

Heading angle

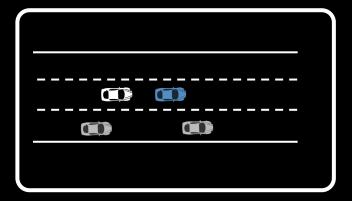
Physical plant

$$\frac{dx}{dt} = f(x, u)$$

System dynamics

$$x[t+1] = f(x[t], u[t])$$

$$x = [v, s_x, s_y, \delta, \psi]$$


State variables

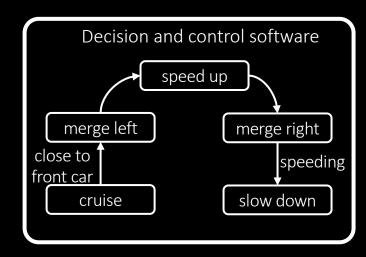
$$u = [a, v_{\delta}]$$

Control inputs

Nonlinear <u>hybrid</u> dynamics

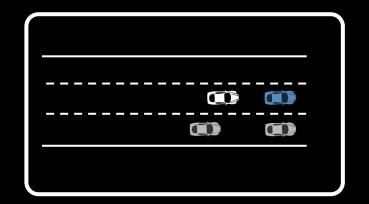
Physical plant

$$\frac{dx}{dt} = f(x, u)$$

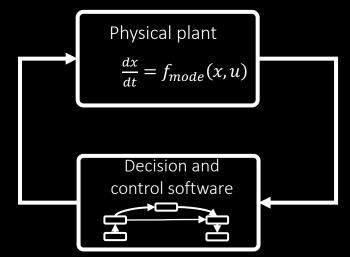

System dynamics

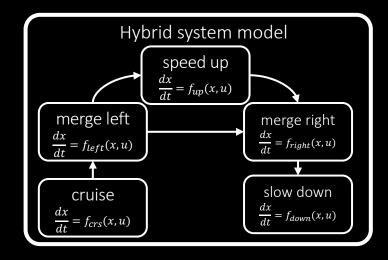
$$x[t+1] = f(x[t], u[t])$$

 $x = [v, s_x, s_y, \delta, \psi]$ State variables


$$u = [a, v_{\delta}]$$

Control inputs


Typical system models



Nonlinear <u>hybrid</u> dynamics

Interaction between computation and physics can lead to unexpected behaviors

Summary

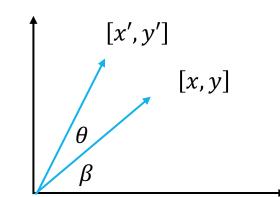
- Dynamical systems models allow us to reason about low-level behaviors of systems and determine what is and is not feasible
 - Typically required to design controllers!
- Discussed a few types of models from simple to complex
- Next time: Look at simple PID control design for trajectory following

Extra Slides

An aside: Coordinate transformations Rotation matrix

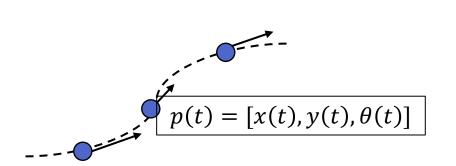
The following matrix rotates a vector [x, y] counter-clockwise by an angle of θ

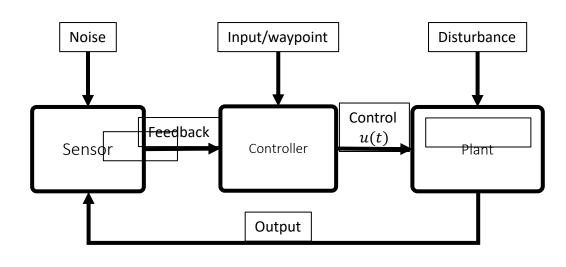
$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$


That is:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Derivation


$$x' = r\cos(\beta + \theta) = r(\cos\beta\cos\theta - \sin\theta\sin\beta)$$
$$= r\cos\beta\cos\theta - r\sin\theta\sin\beta$$
$$= x\cos\theta - y\sin\theta$$



Path following control

- The path followed by a robot can be represented by a trajectory or path parameterized by time
 - → from a higher-level planner
- Defines the desired instantaneous pose p(t)

