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Administrivia 

• Field trips next week!
§ 2/13 Field trip 1 to high bay to see the GEM
§ 2/15 Field trip 2 to see F1tenth cars
§ 2/20 Simulation project walkthrough on

• Upcoming due dates:
§ HW0 and MP0 due Friday 2/9
§ HW1 and MP1 due Friday 2/23



Today’s Plan

• Computer vision overview
• Object recognition

§ Feature representations
§ Classification

• (Convolutional) Neural Networks



Bag of features
1. Extract local features

2. Learn “visual vocabulary”

3. Quantize local features using 
visual vocabulary 

4. Represent images by 
frequencies of “visual words” 



Slide credit: Josef Sivic
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Clustering

Slide credit: Josef Sivic
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Example Visual Codebooks

Source: B. Leibe
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1. Extract local features
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3. Quantize local features using 
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4. Represent images by 
frequencies of “visual words” 



Images as Histogram of Patches

source: Svetlana Lazebnik
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Today’s Plan

• Computer vision overview
• Object recognition

§ Feature representations
§ Classification

• (Convolutional) Neural Networks



From Shallow to Deep Learning

Traditional “Shallow” Pipeline “Deep” Recognition Pipeline



Multi-Layer Perceptron (MLP)



Activation Functions
• Sigmoid

§ Homage to the original formulation
§ Not very popular nowadays as they tend to saturate 

and kills gradients
• Tanh

§ This is a scaled sigmoid and is almost always preferred
• ReLU – Rectified Linear Unit

§ Fast computation, doesn’t saturate, might lead to 
better convergence rates

§ Tends to be fragile in training
• Maxout: max 𝑤!"𝑥 + 𝑏!, 𝑤#"𝑥 + 𝑏#

§ Extension of ReLU that does not die
§ Doubles the number of parameters for every unit



Network Architectures and Sizes
For regular networks, most commonly use fully connected network
Sizing of networks determined by layers, number of units, and/or 
number of parameters

6 units, 6 biases
[3*4]+[4*2]=20 weights
26 learnable parameters

9 units, 9 biases
[2*4]+[4*4]+[4*1]=28 weights
37 learnable parameters

For context, convolutional networks typically have on the order of 100 million parameters



Universal Function Approximators

A feedforward network with a single hidden layer containing a finite
number of units can approximate continuous functions on compact
subsets of Rn, under mild assumptions on the activation function.



Classification 
Improvements



Neural Networks

• Pros:
+ Flexible and general function approximation framework
+ Generally successful is high dimensional and model free problems 



Neural Networks

• Pros:
+ Flexible and general function approximation framework
+ Generally successful is high dimensional and model free problems 

• Cons
- Very few theoretical guarantees
- Training is prone to local optima and unstable
- Large amount of training data and computing power are required
- Huge variety of implementation choices need to be hand tuned (network 

architectures, parameters, etc.)



From Shallow to Deep Learning

Traditional “Shallow” Pipeline “Deep” Recognition Pipeline



Layers as filters

M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks, ECCV 2014









Convolutional Layers

• Each unit has a receptive field that connects it to a
small local region of the input
§ If all units in a depth slice use identical weights, then

the forward pass of this layer can be computed as
a convolution of the weights with the input volume

http://cs231n.github.io/convolutional-networks/
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Convolutional Layers

• Each unit has a receptive field that connects it to a
small local region of the input
§ If all units in a depth slice use identical weights, then

the forward pass of this layer can be computed as
a convolution of the weights with the input volume

• Each conv layer acts like a learnable filter that
activates for some type of visual feature (e.g.,
edge, corner, eye, cat)
• Recall: large ConvNets have a ton of parameters

§ Parameter sharing restricts the weights along one slice
of the depth, reducing the parameters down to
~35,000 (see first point)

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


Convolutional Network Components
ConvNets transform the original image layer by layer from the original 
pixel values to the final class scores
This is done via convolutional layers, pooling, ReLUs, and fully 
connected (FC) layers



Convolutional Network Components
ConvNets transform the original image layer by layer from the original 
pixel values to the final class scores
This is done via convolutional layers, pooling, ReLUs, and fully 
connected (FC) layers
• Conv/FC layers perform transformations that are a function of 

trainable parameters
§ Ex: CIFAR-10 images are size 32x32x3, so one fully-connected unit in a first 

hidden layer of a regular NN would have 32*32*3 = 3072 weights

• ReLU/Pool layers are fixed and not trained



Pooling Layers
The goal of pooling is to progressively reduce the spatial size of the 
representation and the amount of parameters and computation
• operates independently on depth slice and resizes it spatially, often using 

the max operation
Generally speaking:
• Accepts a volume of size W1×H1×D1
• Requires two hyperparameters: their spatial extent F, the stride S,
• Produces a volume of size W2×H2×D2 where:

W2=(W1−F)/S+1
H2=(H1−F)/S+1
D2=D1



Example: Max Pooling

http://cs231n.github.io/convolutional-networks/
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ConvNet Recap
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Convolutional Layer
(trained)

ReLU

Pooling
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http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


Adversarial Examples

Adversarial examples from Ian Goodfellow.

Find the minimum perturbation that will
result in a misclassification.
Resulting noise is often imperceptible.

Even transferring to different cameras or into the
physical world can be quite difficult.



Risks for Autonomy

• What is it about neural networks that are particularly difficult?
§ Training stability is a problem
§ Large amounts of data are required
§ Huge amounts of computation are required

• Large ML models become a black-box 



Summary

• Crash course in computer vision
§ Recognition, reconfiguration, and reconstruction
§ Traditional features vs. learned features

• Introduced the basics of neural networks
§ Did not discuss: backpropagation or training methods
§ Did not discuss: state-of-the-art object detection architectures

• Next time: we’ll look at modeling and control of vehicles!



Extra Slides



So you want to train a neural net.
1. Pre-process data

§ Zero-center and scale by standard deviation
2. Initialize network

§ Initializing weights can be difficult due to instabilities
§ Small random numbers from normal distribution

3. Set up your regularization (penalty term, dropout)
4. Pick a loss function

§ Depends on problem, but try to shoot for softmax whenever possible
5. You are ready to train your network!

§ Initially try to overfit on a tiny subset of your data ~20 samples. Make sure you get zero loss. 
6. Sweep over hyperparameters

§ Initial learning rate and decay schedule, regularization strength
§ Use cross-validation techniques and be prepared to wait. This can take weeks for large 

networks.



What to watch during training

Loss Rates Training vs. Validation 

http://cs231n.github.io/neural-networks-3/
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A few things to keep in mind

1. Machine Learning is not always the answer – try simple methods first.
§ However, use ML over a complex heuristic. A simple heuristic can only get you so 

far, while a complex heuristic is unmaintainable. 

2. When picking features, make sure they are generalizable!
3. Watching out for data imbalances or other quirks with your data.
4. You may skew your data by causing a discrepancy between how you 

handle data in the training and testing.
5. Cross validation is key – never peek at your testing data. You may 

create a feedback loop between your model and your algorithm.


