Lecture 5: Perception I

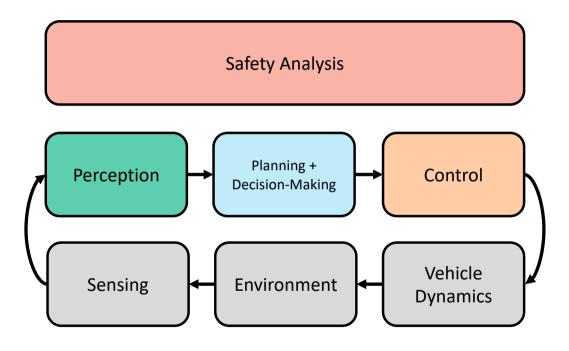
Professor Katie Driggs-Campbell January 30, 2024

ECE484: Principles of Safe Autonomy

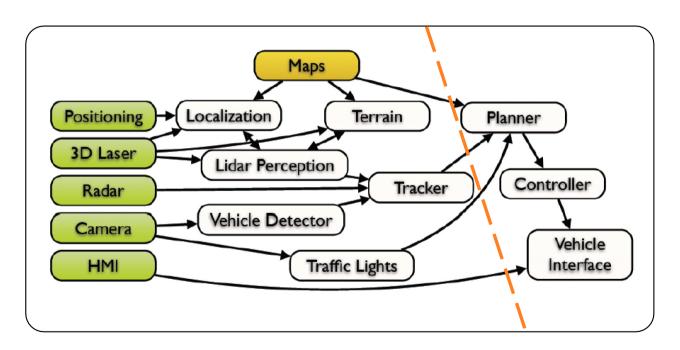
Administrivia

- MP1 released this week
- Upcoming due dates:
 - Form teams ASAP if you haven't already!
 - HW0 and MP0 due Friday 2/9
 - HW1 and MP1 due Friday 2/\6
- · commenting on pop quizzes

Autonomous GEM Vehicle

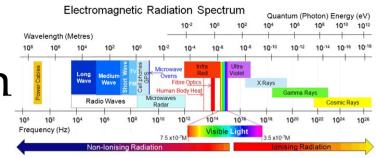


AV Perception Pipeline



This architecture from a slide from M. James of Toyota Research Institute, North America

The Challenge of Perception

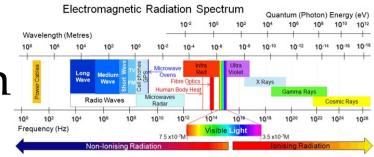


Sensor Goal: Process electromagnetic radiation from the environment to construct a *model* of the world, so that the constructed model is close to the real world and that the output is *actionable*

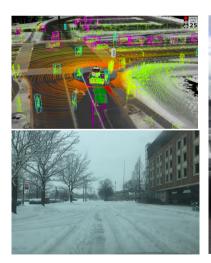
Challenging Questions:

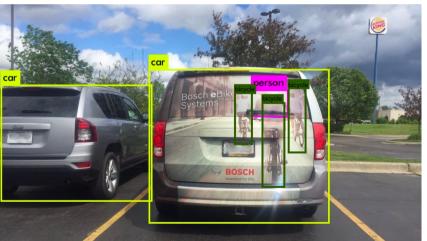
How does one define a car? How can you pass this information to a controller?

The Challenge of Perception



Sensor Goal: Process electromagnetic radiation from the environment to construct a *model* of the world, so that the constructed model is close to the real world and that the output is *actionable*

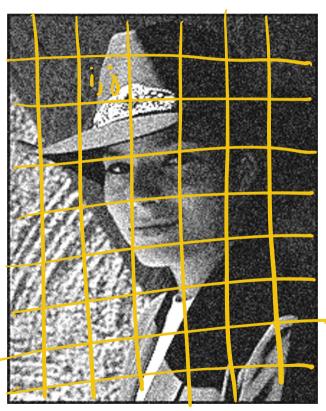




Today's Plan

- Basic image processing with filtering
- Edge detection

Motivation: Filtering for image de-noising



Modify the pixels in an image based on some function of a local neighborhood of the pixels

- Scaling: img' = k*img
- Shifting right by s: img'[k] = img[k-s]
 - img'[0]...img'[s-1] is undefined

Motivation: Filtering for image de-noising

Modify the pixels in an image based on some function of a local neighborhood of the pixels

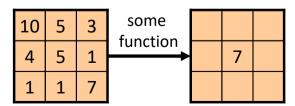
- Scaling: img' = k*img
- Shifting right by s: img'[k] = img[k-s]
 - img'[0]...img'[s-1] is undefined
- Linear filtering: replace each pixel by a linear combination of neighbors

10	5	3	some function		
4	5	1	Tunction	7	
1	1	7			

Motivation: Filtering for image de-noising

Modify the pixels in an image based on some function of a local neighborhood of the pixels

- Scaling: img' = k*img
- Shifting right by s: img'[k] = img[k-s]
 - img'[0]...img'[s-1] is undefined
- Linear filtering: replace each pixel by a linear combination of neighbors



Defining convolution

Let f be the image and g be the kernel.

The output of convolving
$$f$$
 with g is denoted $f *g$.

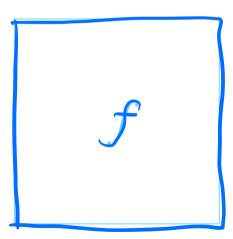
$$(f*g)[m,n] = \sum_{k,l} f[m-k,n-l] \cdot g[k,l]$$

Defining convolution

Let f be the image and g be the kernel.

The output of convolving f with g is denoted f * g.

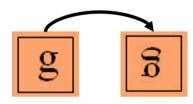
g



Defining convolution

Let f be the image and g be the kernel.

The output of convolving f with g is denoted f * g.



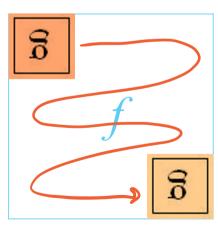


Image Convolution

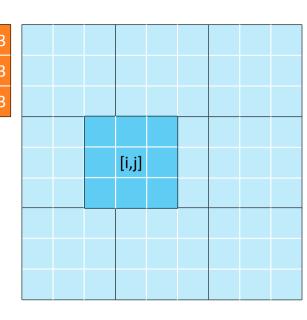
Image Convolution
$$f(f * g)[m,n] = \sum_{i=1}^{n} f[m + i]$$

$$h[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

$$h[i,j] = g[i,l] + g[i,2] + g[i,3] + g$$

Example Filter

$$(f*g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$



Key properties

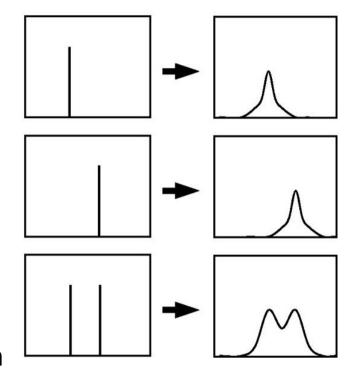
• **Shift invariance:** same behavior regardless of pixel location:

filter(shift(f)) = shift(filter(f))

• Linearity:

$$filter(f_1 + f_2) = filter(f_1) + filter(f_2)$$

→ Theoretical result: any linear shift-invariant operator can be represented as a convolution



Properties in more detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...], a * e = a

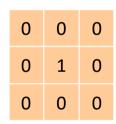
Practice with linear filters (1)

Original

0	0	0
0	1	0
0	0	0

Practice with linear filters (1)

Original



Filtered (no change)

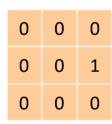
Practice with linear filters (2)

Original

0	0	0
0	0	1
0	0	0

Practice with linear filters (2)

Original



Shifted *left* By 1 pixel

Practice with linear filters (3)

Original

$\frac{1}{9}$	1	1	1
	1	1	1
9	1	1	1

Practice with linear filters (3)

Original

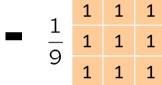
1 9	1	1	1
	1	1	1
	1	1	1

Blur (with a box filter)

Practice with linear filters (4)

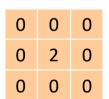
Original

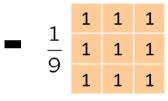
0	0	0	
0	2	0	
0	0	0	



Practice with linear filters (4)

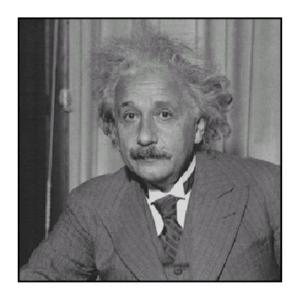
Original

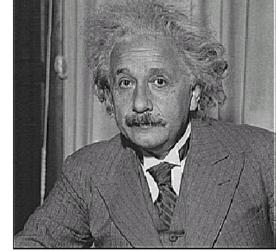




Sharpening filter: Accentuates differences with local average

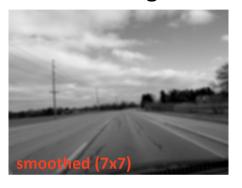
Sharpening Filter



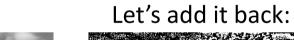


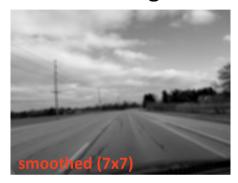
before

after



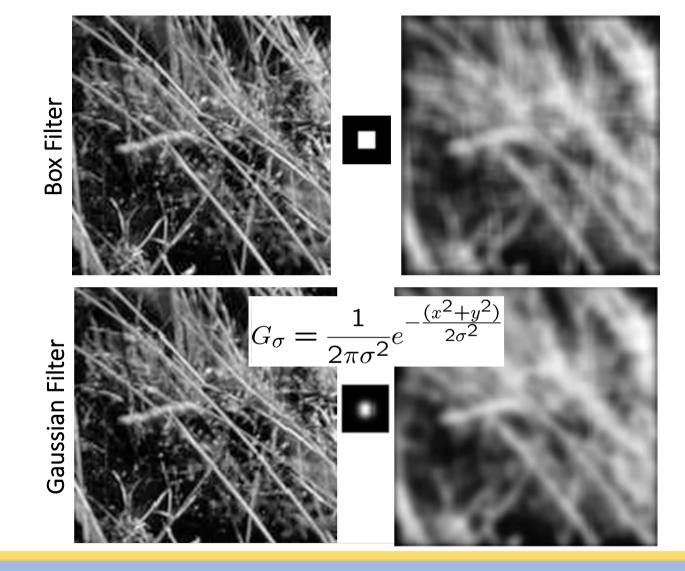






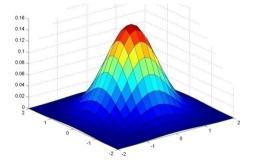
Let's add it back:

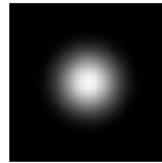
Soft Smoothing

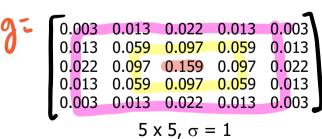


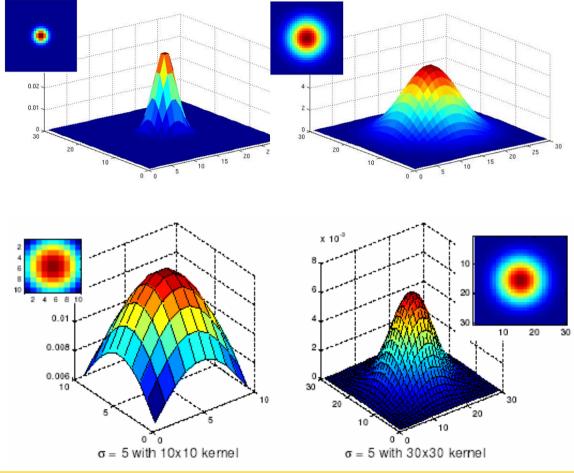
Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$







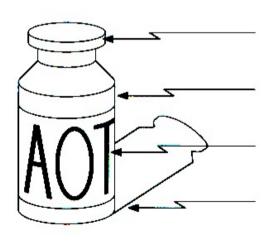


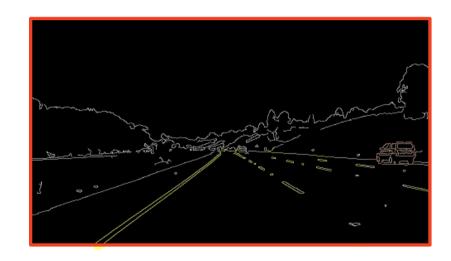
Source: C. Rasmussen Source: K. Grauman

Winter in Kraków photographed by Marcin Ryczek

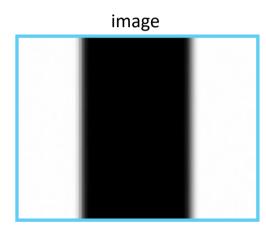
Goal: Identify sudden changes (discontinuities) in an image

Intuitively, edges carry most of the semantic and shape information from the image (e.g., lanes, traffic signs, cars)

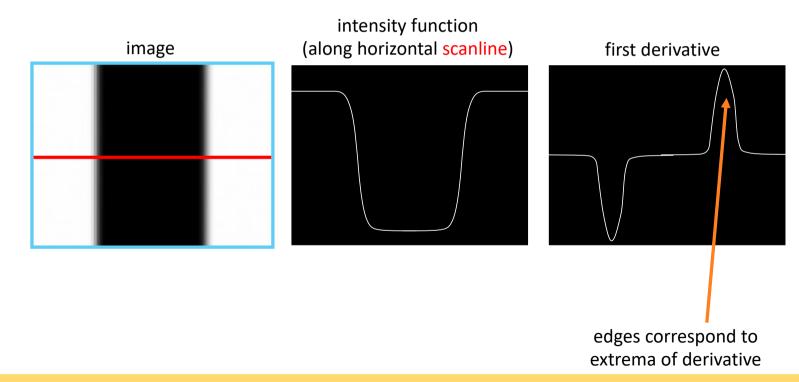




An edge is a place of rapid change in the image intensity function



An edge is a place of rapid change in the image intensity function



Partial Derivatives

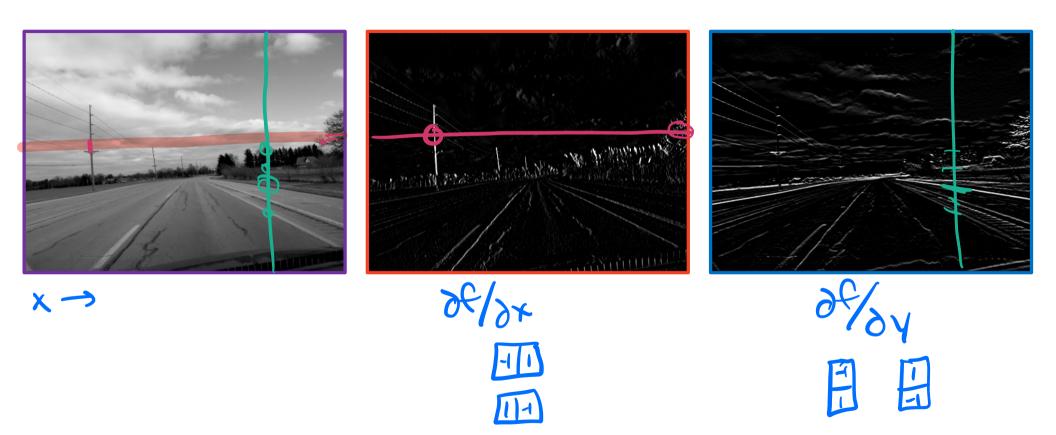
• For f(x, y), the partial derivative with respect to x is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x,y)}{\epsilon}$$

The finite difference equation is:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

Partial derivatives of an image



Other approximations for finite difference filters

Prewitt:
$$M_z = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

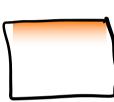
Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Image Gradient

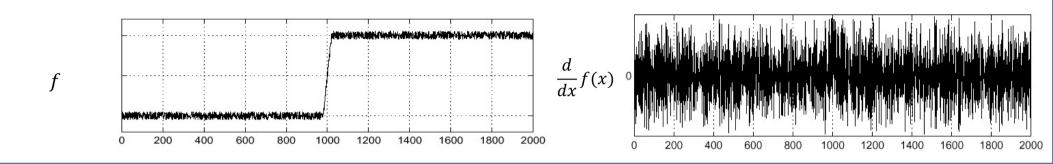
 $\nabla f = [3\% \times 0]$

Vf=[0,087]

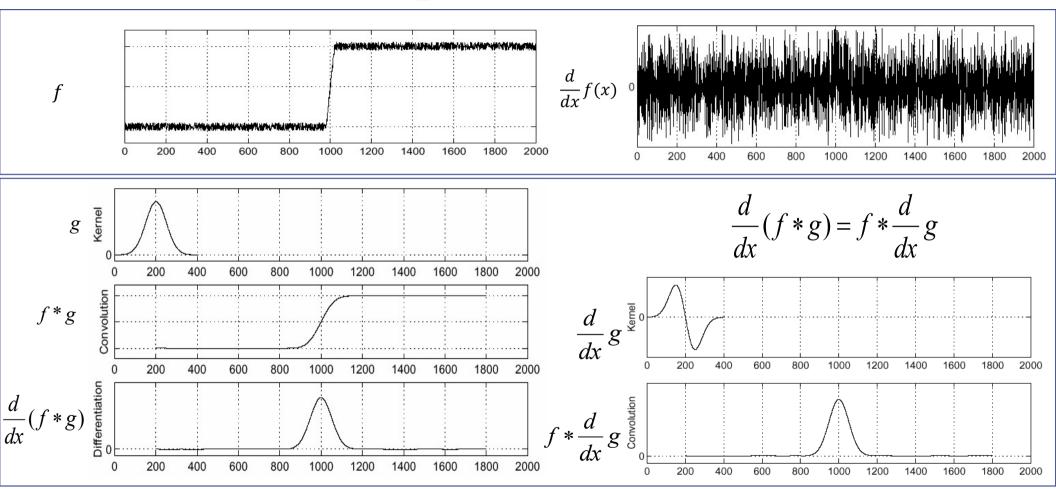


Gradient Direction: 0= tan' (8/04/04)

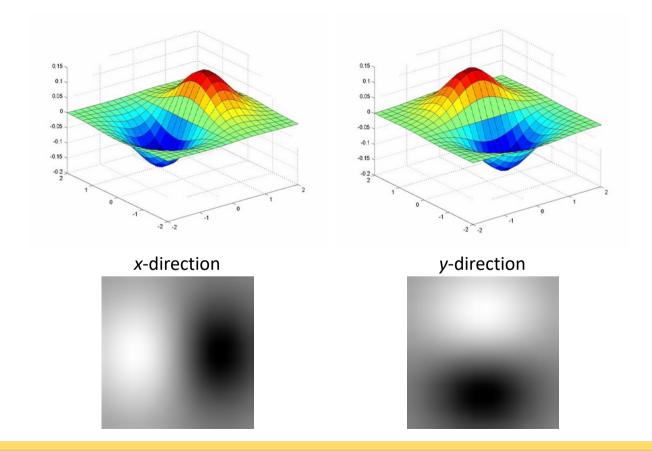
Impact of Noise



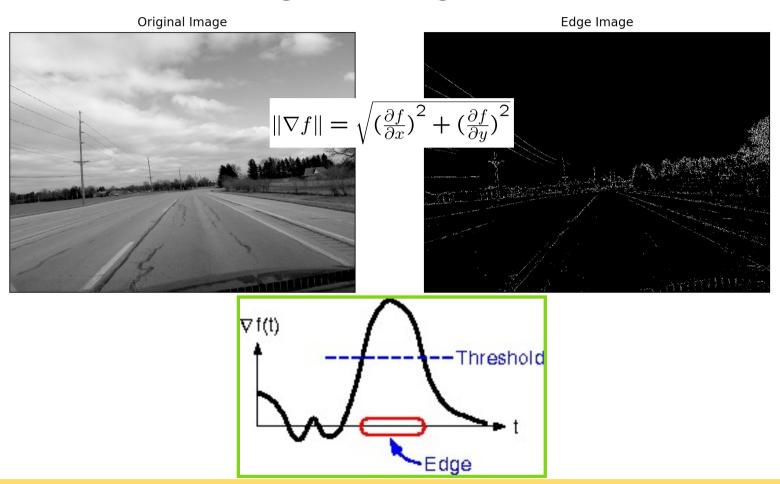
Impact of Noise



Derivative of Gaussian filters

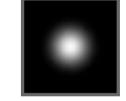


Building an edge detector

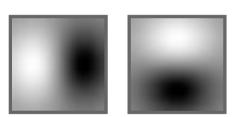


Review: smoothing vs. derivative filters

- Smoothing filters
 - Gaussian: remove "high-frequency" components; "low-pass" filter



- What should the values sum to?
 - One: constant regions are not affected by the filter
- Derivative filters
 - Derivatives of Gaussian
 - What should the values sum to?
 - Zero: no response in constant regions



Summary

- Convolution as translation invariant linear operations on signals and images
 - Examples of filters for smoothing and sharpening images
 - Did not discuss: how to pick a filter for different types of noise?
 - Did not discuss: nice properties of Gaussian Filters (like separability)
- Explored edge detection to understand shapes and semantic meaning in an image
 - Use partial derivatives to determine changes in intensity
 - Did not discuss: how does thresholding impact the edges detected?
 - Did not discuss: advanced edge detectors (Canny Edge Detector)
- Next time: the basics of object recognition!

Extra Slides

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 - $O(n^2 m^2)$
- What if the kernel is separable?
 - O(n² m)

Noise in Images

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Salt and pepper noise

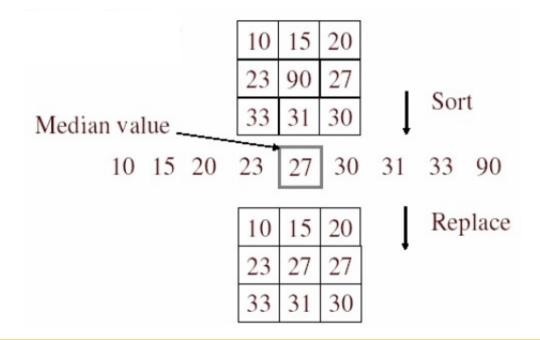
Impulse noise

Gaussian noise

Reducing salt-and-pepper noise

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window



Median filter

- Is median filtering linear?
- Let's try filtering

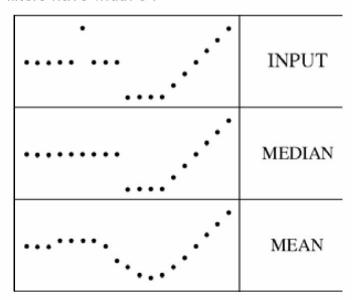
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow 1$$

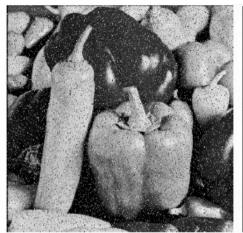
$$\begin{array}{cccc}
1 & 1 & 1 & f \\
1 & 2 & 2 & \longrightarrow & 2 \\
2 & 2 & 2 & \longrightarrow & 2
\end{array}$$

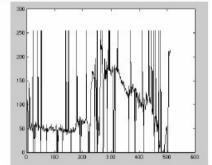
Median filter

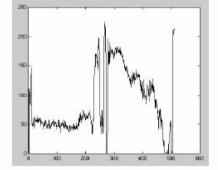
- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

filters have width 5:



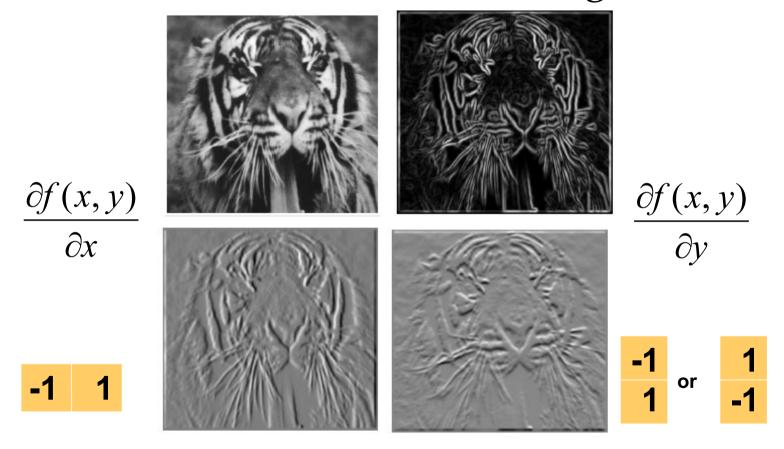






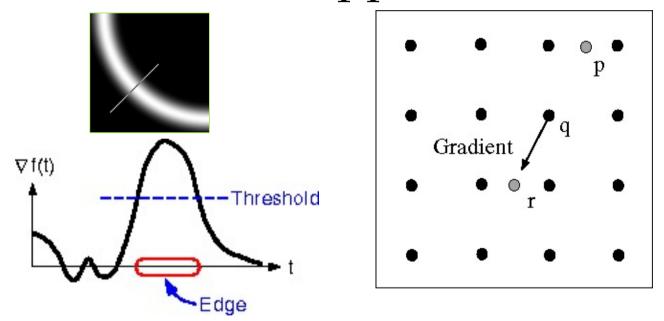
Source: K. Grauman Source: M. Hebert

Partial derivatives of an image



Which shows changes with respect to x?

Non-maximum suppression



- For each location q above threshold, check that the gradient magnitude is higher than at neighbors p and r along the direction of the gradient
 - May need to interpolate to get the magnitudes at p and r

