Lecture 3: Safety II

Professor Katie Driggs-Campbell January 23, 2024

ECE484: Principles of Safe Autonomy

Administrivia

- Schedule is now online
 - Slides are posted before (blank) and after lecture (filled)
 - TBDs will likely be guest lectures
- Office Hours and HW party info posted on website
 - No OH today!
- Lab starts this week will introduce MP0
 - Attendance may be taken!
- If you have DRES accommodations, please send me your letter

Example: Emergency Braking System La, (X2, V2) (x', n')if X2-X, Lds X27X,70 $v_i = max(0, v_i - a_b)$ $V_1 \ge 0$ else $v_i := v_i$ $\chi_1 := \chi_1 + V_1$ X2 = X2+ V2

Executions and Behaviors

Definition: an execution is a particular behavior or trajectory of an automaton A

Note that nondeterministic A will have <u>many</u> executions!

Safety Requirements

We want to express our safety requirements as: X2-X, LE V

- 1. A formula involving state variables
- 2. A subset of Q

The Safety Verification Problem Does there exist any execution $d = Q_0 - Q_k$ of A s.t. $Q_k \in S = U$? if for every finite execution α of A and for every g_i in α , $g_i \in S$, then we say that A is w.r.t. S

Partial Summary

- Absolute safety checking boils down to showing that none of the executions of the automaton reaches an unsafe set U
 - To reason about all executions, we must work with infinite sets of states $\ensuremath{\mathfrak{S}}$

Partial Summary

- Absolute safety checking boils down to showing that none of the executions of the automaton reaches an unsafe set U
 - To reason about all executions, we must work with infinite sets of states ⊗
- One way to compute infinite sets is using the Post operator
 - However: computing all executions for unbounded time can be <u>hard</u>

Partial Summary

- Absolute safety checking boils down to showing that none of the executions of the automaton reaches an unsafe set U
 - To reason about all executions, we must work with infinite sets of states ⊗
- One way to compute infinite sets is using the Post operator
 - However: computing all executions for unbounded time can be <u>hard</u>
- We will now introduce a potential shortcut: invariants!

Inductive Invariants to Prove Safety Then if there exists $I \subseteq Q$ s.t. (i) Q. $\leq I$ (z) Post(I) $\leq I$ then all executions A stay in I Further, if $I \leq S$, then <u>A</u> is safe wrts

 $Q = \{ X_1, U_1, X_2, U_2 \}$ g.X. ->g.X. prestate post state geQ

Proof by Induction

- For any execution of A, $\alpha = q_0, q_1, \dots, q_k$, we will prove by induction on k that $\forall i \ q_i \in I$
- 1. Base case: k = 0, $\alpha = q_0 \in Q_0 \subseteq I$ by (1)
- Inductive Step: Given α = q₀, q₁, ..., q_{k-1}, q_k and <u>q_{k-1} ∈ I</u>, show that q_k ∈ I
 By (2), Post (I) ≤ I
 Since we have g_{k-1} ∈ I => g_k ∈ I
 ∴ ∀i g_i ∈ I

Simple requirement and candidate invariant (1) $S_1 := v_1 \ge 0 // I_1 = I_2 \le J_2 = v_1 \ge 0$ () Qo ≤ I ≅ 28 1 Q. V. 203 / Ygo E Qo show that go E I by def go. V., 20 => g. EI

Simple requirement and candidate invariant (2) (2) $Post(I) \subseteq I$ Post(I):= $\xi g' | g \in I$ and $\langle g_{1}g' \rangle \in D$ for any state $g \in I$ if $g.u. \geq 0$ and $(g_{1}g') \in D$, show $g'.u. \geq 0$ $if_{q,x_2-q,x_1} \subset ds_{q,v_1-q_b} = max(0, q,v_1-q_b) \left[q'.v_1 \ge 0 \right]$ q.u. = q.u. = 0 9.V1= 9.V1

Another requirement Sz: X. <X2 // Is Szan inductive invariant $(Q_0 \leq S_2) (X_{10}) (X_{20}) (X_{$ ② Post(Sz) ≤ Sz? X if q. V. >> q. X2 - q. X1 then g'. x, max exceed g'. Xz

Adding more information
timer := 0
if
$$x_2 - x_1 < d_s$$

if $v_1 > a_b$
 $v_1 := v_1 - a_b$
timer := timer + 1
else $v_1 = 0$
 $x_1 := x_1 + v_1$
 $x_2 := x_2 + v_2$
 $I_3 : timer \leq \underbrace{V_{10} - V_1}{a_0}$
(i) q_0 timer = $0 \leq \underbrace{V_{10} q_0 N_1}{a_0}$
(i) q_0 timer = $0 \leq \underbrace{V_{10} q_0 N_1}{a_0}$
(i) q_0 timer = $0 \leq \underbrace{V_{10} q_0 N_1}{a_0}$
(i) q_0 timer = $0 \leq \underbrace{V_{10} q_0 N_1}{a_0}$
(i) q_0 timer = $0 \leq \underbrace{V_{10} q_0 N_1}{a_0}$
(j) q_0 timer = $0 \leq \underbrace{V_{10} q_0 N_1}{a_0}$

Three Cases to Consider: (1)

Three Cases to Consider: (2)

Three Cases to Consider: (3)

Showing Safety with a Timer

- Goal: show $x_2 x_1 > 0$
- Maximum distance traveled by car 1 after detection:

Baked-in Assumptions (1)

- Perception.
 - Sensor detects obstacle iff distance $d \leq D_{sense}$
 - How to model vision errors?

1.2.1.2 Vertical Detection Area

Detection Distance (m)

Baked-in Assumptions (1)

- Perception.
 - Sensor detects obstacle **iff** distance $d \leq D_{sense}$
 - How to model vision errors?
- Pedestrian Behaviors.
 - Pedestrian is assumed to be moving with constant velocity from initial position

Detection Distance (m)

Baked-in Assumptions (1)

- Perception.
 - Sensor detects obstacle iff distance $d \leq D_{sense}$
 - How to model vision errors?
- Pedestrian Behaviors.
 - Pedestrian is assumed to be moving with constant velocity from initial position
- No sensing-computation-actuation delay.
 - The time step in which $d \leq D_{sense}$ is true is exactly when the velocity starts to decrease

Baked-in Assumptions (2)

- Mechanical or Dynamical assumptions
 - Vehicle and pedestrian moving in 1-D lane.
 - Does not go backwards.
 - Perfect discrete kinematic model for velocity and acceleration.

Baked-in Assumptions (2)

- Mechanical or Dynamical assumptions
 - Vehicle and pedestrian moving in 1-D lane.
 - Does not go backwards.
 - Perfect discrete kinematic model for velocity and acceleration.
- Nature of time
 - Discrete steps. Each execution of the above function models advancement of time by 1 step. If 1 step = 1 second, $x_1(t + 1) = x_1(t) + v_1(t)$. 1
 - Atomic steps. 1 step = complete (atomic) execution of the program.
 - We cannot directly talk about the states visited after partial execution of program

Remarks and Takeaway

- The proof by induction shows a property of *all behaviors of our model*
- The proof is conceptually simple, but can quickly get tedious and error prone
 - Verification and Validation tools like Z3, Dafny, PVS, CoQ, AST, MC2, automate this

Summary

- We must translate safety requirements into sets of states or formulas over state variables
- Reachability allows us to prove safety
- Invariant trick can give a shortcut for proving safety ⁽³⁾
 - The invariant I may contain important information about conserved quantities and may also tell us why the system is safe
 - However, often requires guessing and checking and a lot of engineering effort
- Mind the gap between model and reality!
- Next: More safety (fun lecture)

