4o

Lecture 3: Satety II

Professor Katie Driggs-Campbell
January 23, 2024

ECE484: Principles of Safe Autonomy

4o

Administrivia

Schedule is now online
Slides are posted before (blank) and after lecture (filled) &
TBDs will likely be guest lectures

Office Hours and HW party info posted on website
No OH today!

Lab starts this week — will introduce MPO
Attendance may be taken!

If you have DRES accommodations, please send me your letter

Example: Emergency Braking System

\‘Q SRl <dls \(7’7*&70
o .= mox(0) v,-%e) >0

g\ vi=N R

ﬁ\.':) T

4o

4o

Executions and Behaviors

Definition: an execution is a particular behavior or trajectory of an
automaton A

* = Goids o O
D/Dﬁ

such that:
qdo € Q
(q:,qi+1) € D, Vi

Note that nondeterministic A will have many executions!

Satety Requirements

We want to express our safety requwements as: ¢ € /
A formula involving state variables *‘
A subset of Q

The Safety Verification Problem .
Docs vt <ist apy Lxecvtion 7
A= Qe - ok A \/6-(* b eS-U

- o ction ot o A and
0 Lo avery Snite ¢ W S0
for 2\EV'N "g moe, B¢ > Fhan
W\o\, A_ s u).(‘.to %

Coms)

g o

Reachability and the Post operator
tor REQ, Bst(R)= fq) Q[T g,

) A v

R O/D
—0
?bs‘{’(k\

€ER and
693

orovces 2t O reochaple S01ES
—S ~

4o

Partial Summary

Absolute safety checking boils down to showing that none of the
executions of the automaton reaches an unsafe set U

To reason about all executions, we must work with infinite sets of states ®

4o

Partial Summary

Absolute safety checking boils down to showing that none of the
executions of the automaton reaches an unsafe set U

To reason about all executions, we must work with infinite sets of states ®

One way to compute infinite sets is using the Post operator
However: computing all executions for unbounded time can be hard

4o

Partial Summary

Absolute safety checking boils down to showing that none of the
executions of the automaton reaches an unsafe set U

To reason about all executions, we must work with infinite sets of states ®

One way to compute infinite sets is using the Post operator
However: computing all executions for unbounded time can be hard

We will now introduce a potential shortcut: invariants!

e

Inductive I o)
nvariants! ’”@

Inductive Invariants to Prove Safety

T 1§ theve 2xsts TEQ €

1
sray 1IN
g all axeeohons % S L ake

?UV‘\/NV} I
&:Zf_}-‘\)\)Kﬁ)\)‘l«% \
Cb e cb. W — qib_:(;—’\—a&l-t

Proof by Induction

For any execution of A, @ = q,, 44, .., 9%, We Will prove by induction
onkthatVigqg; €1

Basecase:k =0,a=q9 € Qy €1 by (1)

Inductive Step: Given a = qq, 41, ---» Qx—1, 9% and q,_1 € I, show
that g, €1 '

By (2) \ Post (L)< 1l e L = Q cxL
siner wl havt G =
o 9 g €L

Simple requirement and candidate invariant (1)

%.;: ¢, 20 // 1\’[[3»3:: V,2 O

.

Simple requirement and candidate invariant (2)
C
(2) Vost (I\ €l A (%\%7 €D3

.= ! T an
Ps*(‘.[}-—i% \%é
%j any Aot G €1 VK cb.\).ZO and

(%\ab\) f'rD' Show %‘.\)‘ 20
W ”‘"ad&éds - 'v, 290
\ C:;;’\h‘_— mo\)do) Cb-\h O\'b) a()
2 \s& =
fo- 1= G\ G\ = GV O

.

Another requirement

S,: X, <Xz / Ts

S, an induetive huar

ot
7

.

Adding more information \io = N

timer := 0
if x, —xq < dg
if vy > ay
Vi =V1— Gy
timer := timer + 1
elsev; =0
else v, == v,
X1 =X+ 71
Xy = Xo + Uy

I,52 '\’\VVIQV. é— ab

() g ¥Yimer =0 f:’::i;""/

(2) 00613 =7 %‘61—;

Three Cases to Consider: (1)

Three Cases to Consider: (2)

Three Cases to Consider: (3)

4o

Showing Safety with a Timer

Goal: showx, —x; > 0
Maximum distance traveled by car 1 after detection:

Baked-in Assumptions (1)

Perception' 1.2.1.2 Vertical Detection Al
Sensor detects obstacle iff distance d < Dgopse ol e
How to model vision errors?

T T T T T T T
0 5 10 15 20 25 30 35

Detection Distance (m)

Baked-in Assumptions (1)

Perception.
Sensor detects obstacle iff distance d < Dgopse
How to model vision errors?

Pedestrian Behaviors.

Pedestrian is assumed to be moving with
constant velocity from initial position

1.2.1.2 Vertical Detection Area

D Person
D Car

T
10

T T
15 20

Detection Distance (m)

T
25

T
30

T
35

Baked-in Assumptions (1)

Perception.
Sensor detects obstacle iff distance d < Dgopse
How to model vision errors?

Pedestrian Behaviors.
Pedestrian is assumed to be moving with
constant velocity from initial position

No sensing-computation-actuation delay.

The time step in which d < Dg,pe is true is
exactly when the velocity starts to decrease

1.2.1.2 Vertical Detection Area

D Person
D Car

4o

Baked-in Assumptions (2)

Mechanical or Dynamical assumptions
Vehicle and pedestrian moving in 1-D lane.
Does not go backwards.
Perfect discrete kinematic model for velocity and acceleration.

L0 Bpe)
"-.-.‘ ----------
Pes tC ! J
\
\
X, U, tO

4o

Baked-in Assumptions (2)

Mechanical or Dynamical assumptions
Vehicle and pedestrian moving in 1-D lane.
Does not go backwards.
Perfect discrete kinematic model for velocity and acceleration.

Nature of time
Discrete steps. Each execution of the above function models

advancement of time by 1 step. If 1 step =1 second, x;(t + 1) =

xl(t) + vl(t). 1

L0 Bpe)
"-.-.‘ ----------
Pes tC ! J
\
\
X, U, tO

Atomic steps. 1 step = complete (atomic) execution of the program.
We cannot directly talk about the states visited after partial execution of program

Remarks and Takeaway

* The proof by induction shows a property of all behaviors of our model

* The proof is conceptually simple, but can quickly get tedious and error prone
= Verification and Validation tools like Z3, Dafny, PVS, CoQ, AST, MC2, automate this

Model A

Requirement R

V&V

Proof that A
satisfies R

Counterexample
of A violating R

4o

Summary

We must translate safety requirements into sets of states or formulas over
state variables

Reachability allows us to prove safety

Invariant trick can give a shortcut for proving safety ©

The invariant I may contain important information about conserved quantities and
may also tell us why the system is safe

However, often requires guessing and checking and a lot of engineering effort

Mind the gap between model and reality!

Next: More safety (fun lecture)

