
Lecture 3: Safety II
Professor Katie Driggs-Campbell

January 23, 2024

ECE484: Principles of Safe Autonomy

Administrivia
• Schedule is now online

§ Slides are posted before (blank) and after lecture (filled) !
§ TBDs will likely be guest lectures

• Office Hours and HW party info posted on website
§ No OH today!

• Lab starts this week – will introduce MP0
§ Attendance may be taken!

• If you have DRES accommodations, please send me your letter

Example: Emergency Braking System

Executions and Behaviors
Definition: an execution is a particular behavior or trajectory of an
automaton !

" = $!$"$#…
such that:
1.$! ∈)
2. $$, $$%" ∈ ,, ∀.

Note that nondeterministic ! will have many executions!

Safety Requirements
We want to express our safety requirements as:
1. A formula involving state variables
2. A subset of Q

The Safety Verification Problem

Reachability and the Post operator

Partial Summary
• Absolute safety checking boils down to showing that none of the

executions of the automaton reaches an unsafe set U
§ To reason about all executions, we must work with infinite sets of states L

Partial Summary
• Absolute safety checking boils down to showing that none of the

executions of the automaton reaches an unsafe set U
§ To reason about all executions, we must work with infinite sets of states L

• One way to compute infinite sets is using the Post operator
§ However: computing all executions for unbounded time can be hard

Partial Summary
• Absolute safety checking boils down to showing that none of the

executions of the automaton reaches an unsafe set U
§ To reason about all executions, we must work with infinite sets of states L

• One way to compute infinite sets is using the Post operator
§ However: computing all executions for unbounded time can be hard

• We will now introduce a potential shortcut: invariants!

Inductive Invariants!

Inductive Invariants to Prove Safety

Proof by Induction
• For any execution of A, " = $!, $", … , $&, we will prove by induction

on k that ∀. $$ ∈ /
1. Base case: 0 = 0, " = $! ∈)! ⊆ / by (1)
2. Inductive Step: Given " = $!, $", … , $&'", $& and $&'" ∈ /, show

that $& ∈ /

Simple requirement and candidate invariant (1)

Simple requirement and candidate invariant (2)

Another requirement

Adding more information
timer ≔ 0
if 9# − 9" < <(

if =" > ?)
=" ≔ =" − ?)
timer ≔ timer + 1

else =" = 0
else =" ≔ ="
9" ≔ 9" + ="
9# ≔ 9# + =#

Three Cases to Consider: (1)

Three Cases to Consider: (2)

Three Cases to Consider: (3)

Showing Safety with a Timer
• Goal: show 9# − 9" > 0
• Maximum distance traveled by car 1 after detection:

Baked-in Assumptions (1)
• Perception.

§ Sensor detects obstacle iff distance ! ≤ #!"#!"
§ How to model vision errors?

Baked-in Assumptions (1)
• Perception.

§ Sensor detects obstacle iff distance ! ≤ #!"#!"
§ How to model vision errors?

• Pedestrian Behaviors.
§ Pedestrian is assumed to be moving with

constant velocity from initial position

Baked-in Assumptions (1)
• Perception.

§ Sensor detects obstacle iff distance ! ≤ #!"#!"
§ How to model vision errors?

• Pedestrian Behaviors.
§ Pedestrian is assumed to be moving with

constant velocity from initial position
• No sensing-computation-actuation delay.

§ The time step in which ! ≤ #!"#!" is true is
exactly when the velocity starts to decrease

Baked-in Assumptions (2)
• Mechanical or Dynamical assumptions

§ Vehicle and pedestrian moving in 1-D lane.
§ Does not go backwards.
§ Perfect discrete kinematic model for velocity and acceleration.

{⟨#$, &$⟩}

{ℓ$}

#*, &*

+, ,, &-

.(#*, 01)

Baked-in Assumptions (2)
• Mechanical or Dynamical assumptions

§ Vehicle and pedestrian moving in 1-D lane.
§ Does not go backwards.
§ Perfect discrete kinematic model for velocity and acceleration.

• Nature of time
§ Discrete steps. Each execution of the above function models

advancement of time by 1 step. If 1 step = 1 second, $$ % + 1 =
$$ % +)$ % . 1

§ Atomic steps. 1 step = complete (atomic) execution of the program.
o We cannot directly talk about the states visited after partial execution of program

{⟨#$, &$⟩}

{ℓ$}

#*, &*

+, ,, &-

.(#*, 01)

Remarks and Takeaway

• The proof by induction shows a property of all behaviors of our model
• The proof is conceptually simple, but can quickly get tedious and error prone

§ Verification and Validation tools like Z3, Dafny, PVS, CoQ, AST, MC2, automate this

Model A

Requirement R

V&V

Proof that A
satisfies R

Counterexample
of A violating R

Summary
• We must translate safety requirements into sets of states or formulas over

state variables
• Reachability allows us to prove safety
• Invariant trick can give a shortcut for proving safety J

§ The invariant ! may contain important information about conserved quantities and
may also tell us why the system is safe

§ However, often requires guessing and checking and a lot of engineering effort

• Mind the gap between model and reality!
• Next: More safety (fun lecture)

