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Lecture 3: Satety II

Professor Katie Driggs-Campbell
January 23, 2024

ECE484: Principles of Safe Autonomy
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Administrivia

Schedule is now online
Slides are posted before (blank) and after lecture (filled) &
TBDs will likely be guest lectures

Office Hours and HW party info posted on website
No OH today!

Lab starts this week — will introduce MPO
Attendance may be taken!

If you have DRES accommodations, please send me your letter



Example: Emergency Braking System
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Executions and Behaviors

Definition: an execution is a particular behavior or trajectory of an
automaton A

* = Goids o O
D/Dﬁ

such that:
qdo € Q
(q:,qi+1) € D, Vi

Note that nondeterministic A will have many executions!



Satety Requirements

We want to express our safety requwements as: ¢ € /
A formula involving state variables *‘
A subset of Q




The Safety Verification Problem .
Docs vt <ist apy Lxecvtion 7
A= Qe - ok A \/6-(* b eS-U

- o ction ot o A and
0 Lo avery Snite ¢ W S0
for 2\EV'N "g moe, B¢ > Fhan
_W\o\_\, A_ s u).(‘.to %

Coms)




g o

Reachability and the Post operator
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Partial Summary

Absolute safety checking boils down to showing that none of the
executions of the automaton reaches an unsafe set U

To reason about all executions, we must work with infinite sets of states ®
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Partial Summary

Absolute safety checking boils down to showing that none of the
executions of the automaton reaches an unsafe set U

To reason about all executions, we must work with infinite sets of states ®

One way to compute infinite sets is using the Post operator
However: computing all executions for unbounded time can be hard
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Partial Summary

Absolute safety checking boils down to showing that none of the
executions of the automaton reaches an unsafe set U

To reason about all executions, we must work with infinite sets of states ®

One way to compute infinite sets is using the Post operator
However: computing all executions for unbounded time can be hard

We will now introduce a potential shortcut: invariants!
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Inductive I o )
nvariants! ’”@




Inductive Invariants to Prove Safety
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Proof by Induction

For any execution of A, @ = q,, 44, .., 9%, We Will prove by induction
onkthatVigqg; €1

Basecase:k =0,a=q9 € Qy €1 by (1)

Inductive Step: Given a = qq, 41, ---» Qx—1, 9% and q,_1 € I, show
that g, €1 '

By (2) \ Post (L)< 1l e L = Q cxL
siner wl havt G =
o 9 g €L




Simple requirement and candidate invariant (1)
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Simple requirement and candidate invariant (2)
C
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Another requirement
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Adding more information \io = N

timer := 0
if x, —xq < dg
if vy > ay
Vi =V1— Gy
timer := timer + 1
elsev; =0
else v, == v,
X1 =X+ 71
Xy = Xo + Uy

I,52 '\’\VVIQV. é— ab

() g ¥Yimer =0 f:’::i;""/

(2) 00613 =7 %‘61—;




Three Cases to Consider: (1)




Three Cases to Consider: (2)




Three Cases to Consider: (3)
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Showing Safety with a Timer

Goal: showx, —x; > 0
Maximum distance traveled by car 1 after detection:



Baked-in Assumptions (1)

Perception' 1.2.1.2 Vertical Detection Al
Sensor detects obstacle iff distance d < Dgopse ol e
How to model vision errors?
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Baked-in Assumptions (1)

Perception.
Sensor detects obstacle iff distance d < Dgopse
How to model vision errors?

Pedestrian Behaviors.

Pedestrian is assumed to be moving with
constant velocity from initial position

1.2.1.2 Vertical Detection Area

D Person
D Car
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Baked-in Assumptions (1)

Perception.
Sensor detects obstacle iff distance d < Dgopse
How to model vision errors?

Pedestrian Behaviors.
Pedestrian is assumed to be moving with
constant velocity from initial position

No sensing-computation-actuation delay.

The time step in which d < Dg,pe is true is
exactly when the velocity starts to decrease

1.2.1.2 Vertical Detection Area

D Person
D Car
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Baked-in Assumptions (2)

Mechanical or Dynamical assumptions
Vehicle and pedestrian moving in 1-D lane.
Does not go backwards.
Perfect discrete kinematic model for velocity and acceleration.
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Baked-in Assumptions (2)

Mechanical or Dynamical assumptions
Vehicle and pedestrian moving in 1-D lane.
Does not go backwards.
Perfect discrete kinematic model for velocity and acceleration.

Nature of time
Discrete steps. Each execution of the above function models

advancement of time by 1 step. If 1 step =1 second, x;(t + 1) =

xl(t) + vl(t). 1

L0 Bpe )
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\
\
X, U, tO

Atomic steps. 1 step = complete (atomic) execution of the program.
We cannot directly talk about the states visited after partial execution of program



Remarks and Takeaway

* The proof by induction shows a property of all behaviors of our model

* The proof is conceptually simple, but can quickly get tedious and error prone
= Verification and Validation tools like Z3, Dafny, PVS, CoQ, AST, MC2, automate this

Model A

Requirement R

V&V

Proof that A
satisfies R

Counterexample
of A violating R
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Summary

We must translate safety requirements into sets of states or formulas over
state variables

Reachability allows us to prove safety

Invariant trick can give a shortcut for proving safety ©

The invariant I may contain important information about conserved quantities and
may also tell us why the system is safe

However, often requires guessing and checking and a lot of engineering effort

Mind the gap between model and reality!

Next: More safety (fun lecture)



