
Sampling-based Planning and Control
Lecture 18

Principles of Safe Autonomy ECE484
Sayan Mitra

Announcements

• Guest lecture: Nov 9th Dr. Qinru Li, Waymo, ECE Alumni (must attend)
• Intermediate check-in with TAs
• How much progress have you made?
• How well is the team working?

• Midterm 2: Nov 14th

• Filtering and planning
• Midterm 2 Review: Nov 7th

Motion planning problem
• Get from point A to point B avoiding obstacles

• Last 2 lectures we saw how to search for collision free trajectories can
be converted to graph search
• Each vertex represents a region of the gridded state space; edges between centers

• Paths may not be realizable

• Hybrid A* constructs dynamically feasible paths
• edges between arbitrary points in grid regions
• Not guaranteed to be complete

• Grid/discretization does not scale to high-dimensional state spaces

• Today: sampling-based motion planning
• Can directly incorporate dynamical constraints
• Scales to higher dimensions
• Cons: Probabilistic completeness

Motion planning problem
Consider a dynamical control system defined by an
ODE of the form !"

!#
= 𝑓 𝑥, 𝑢 , 𝑥 0 = 𝑥$%$#. (1)

where 𝑥 is the state, 𝑢 is the control. Given an obstacle
set 𝑋&'(# ⊂ 𝑅! , and a goal set 𝑋)&*+ ⊂ 𝑅!, the
objective of the motion planning problem is to find, if it
exists, a control signal 𝑢 such that the solution of (1)
satisfies
• for all 𝑡 ∈ 𝑅,-, 𝑥 𝑡 ∉ 𝑋𝑜𝑏𝑠 , and
• for some finite T ≥ 0, for all t > T , 𝑥(𝑡) ∈ 𝑋)&*+, 0
• Return failure if no such control signal exists.

𝑋!"#

𝑋!"#

𝑋!"#$

𝑋$%$&

Canonical problem
Basic problem in robotics
• Autonomous vehicles
• Puzzles

Provably very hard: a basic version (the Generalized Piano
Mover’s problem) is known to be PSPACE-hard [Reif, ’79].

Types of planners

Discretization + graph search: Analytic/grid-based methods
do not scale well to high dimensions.

• A∗ , D ∗ , etc. can be sensitive to graph size. Resolution complete.

Algebraic planners: Explicit representation of obstacles.
• Use complicated algebra (visibility computations/projections) to

find the path. Complete, but often impractical.

Potential fields/navigation functions: Virtual attractive forces
towards the goal, repulsive forces away from the obstacles.

• No completeness guarantees, unless “navigation functions” are
available—very hard to compute in general.

Sampling-based algorithms

Solutions are computed based on samples from some distribution.

Retain some form of completeness, e.g., probabilistic completeness

Incremental sampling methods
- Lend themselves to real-time, on-line implementations
- Can work with very general dynamics
- Do not require explicit constraints

Outline

Probabilistic Roadmaps
Rapidly expanding random trees (RRT)
RRG

Probabilistic RoadMaps (PRM)
Introduced by Kavraki and Latombe in 1994

Mainly geared towards “multi-query” motion planning problems

Idea: build (offline) a graph (i.e., the roadmap) representing the “connectivity” of the environment;
use this roadmap to figure out paths quickly at run time.

Learning/pre-processing phase:

• Sample n points from 𝑋𝑓𝑟𝑒𝑒 = 0, 1 𝑑\ 𝑋𝑜𝑏𝑠
• Try to connect these points using a fast “local planner”

• If connection is successful (i.e., no collisions), add an edge between the points.

At run time:

• Connect the start and end goal to the closest nodes in the roadmap

• Find a path on the roadmap, e.g., using BFS, DFS, A*

First planner ever to demonstrate the ability to solve general planning problems in > 4-5 dimensions!

PRM in action

Picture from Wikipedia.org
https://en.wikipedia.org/wiki/Probabilistic_roadmap

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M.
H. (1996), "Probabilistic roadmaps for path planning in high-
dimensional configuration spaces", IEEE Transactions on
Robotics and Automation, 12 (4): 566–580

https://en.wikipedia.org/wiki/Lydia_Kavraki
https://en.wikipedia.org/wiki/Jean-Claude_Latombe
https://en.wikipedia.org/wiki/Mark_Overmars
https://en.wikipedia.org/wiki/Mark_Overmars

Simple PRM construction

V ← {xinit} ∪ {SampleFreei}i=1,...,N−1

E ← ∅
foreach v ∈ V do

U ← Near(G = (V, E), v, r) \ {v}
foreach u ∈ U do

if CollisionFree(v, u) then
E ← E ∪ {(v, u),(u, v)}

return G = (V, E)

Near(G, v, r): Finds the subset of vertices in G that are
within r distance of v

CollisionFree(v, u): checks whether there is a path from u
to v that does not collide with the obstacles

v

r

Probabilistic RoadMap

Connect points within a radius r, starting
from “closest” ones

Do not attempt to connect points already
on the same connected component of PRM

What properties does this algorithm have?

• Will it find a solution if one exists?

• Is this an optimal solution?

• What is the complexity?

𝑋!"#

𝑋!"#

𝑋$!%&

𝑋'(')

Robustness and Probabilistic completeness
Definition. A motion planning problem 𝑃 = (𝑋𝑓𝑟𝑒𝑒, 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙) is
robustly feasible if there exists some small δ>0 such that a solution
remains a solution if obstacles are “dilated” by δ.

Definition. An algorithm ALG is probabilistically complete if, for any
robustly feasible motion planning problem defined by 𝑃 =
(𝑋𝑓𝑟𝑒𝑒, 𝑥𝑖𝑛𝑖𝑡, 𝑋𝑔𝑜𝑎𝑙), lim𝑁→∞Pr(𝐴𝐿𝐺 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑃) = 1.

• Applicable to motion planning problems with a robust solution.

𝑋"%&

𝑋"%&

𝑋!"#$

𝑋'(')

Fig. not robustly feasible.

Paper: Sampling-based Algorithms for Optimal Motion Planning, Sertac Karaman Emilio Frazzoli

Asymptotic optimality of sampling-based algorithms

Suppose we have a cost function 𝑐 that associates to each path 𝜎 a non-

negative cost 𝑐(𝜎), e.g., 𝑐(𝜎) = ∫𝜎 𝜒(𝑠) 𝑑𝑠.

𝑌𝑖𝐴𝐿𝐺 = 𝑐(𝜎𝑖) Cost of the output path 𝜎𝑖 from ALG with i samples
Definition. An algorithm ALG is asymptotically optimal if, for any motion
planning problem 𝑃 = (𝑋𝑓𝑟𝑒𝑒 , 𝑥𝑖𝑛𝑖𝑡 , 𝑋𝑔𝑜𝑎𝑙) and cost function 𝑐 that
admits a robust optimal solution with finite cost 𝑐∗,

𝑷 lim
𝑖→∞

𝑌𝑖𝐴𝐿𝐺 = 𝑐∗ = 1, where

Properties of PRM

The simplified version of the PRM (sPRM) algorithm has been shown to
be probabilistically complete. (No proofs available for the “real” PRM!)
Moreover, the probability of success goes to 1 exponentially fast, if the
environment satisfies certain “good visibility” conditions.
But, NOT asymptotically optimal

Edges make unnecessary connections in a connected component
Set of optimal paths has measure 0

New key concept: combinatorial complexity vs. “visibility”

Complexity of Sampling-based Algorithms

How can we measure complexity for an algorithm that does not necessarily
terminate?

Treat the number of samples as “the size of the input.” (Everything else stays the same)
Complexity per sample: how much work (time/memory) is needed to process one sample.
Useful for comparison of sampling-based algorithms. Not for deterministic, complete algorithms.

Complexity of PRM for N samples Θ(𝑁2)
Practical complexity reduction tricks

k-nearest neighbors: connect to the k nearest neighbors. Complexity Θ(N log N). (Finding nearest
neighbors takes log N time.)
Bounded degree: connect at most k neighbors among those within radius r.
Variable radius: change the connection radius r as a function of N. How?

Rapidly Exploring Random Trees (RRT)

Introduced by LaValle and Kuffner in 1998
Appropriate for single-query planning problems
Idea: build (online) a tree, exploring the region of the state space that
can be reached from the initial condition.
At each step: sample one point from 𝑋𝑓𝑟𝑒𝑒, and try to connect it to the
closest vertex in the tree.
Very effective in practice

RRT

LaValle, Steven M.; Kuffner Jr., James
J. (2001). "Randomized Kinodynamic
Planning" (PDF). The International Journal of
Robotics Research (IJRR). 20 (5): 378–
400. doi:10.1177/02783640122067453. S2CID 4047
9452.

https://en.wikipedia.org/wiki/Steven_M._LaValle
https://en.wikipedia.org/wiki/James_J._Kuffner_Jr.
https://en.wikipedia.org/wiki/James_J._Kuffner_Jr.
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1177%2F02783640122067453
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:40479452
https://api.semanticscholar.org/CorpusID:40479452

RRT
V ← {xinit}; E ← ∅
for i = 1, . . . , N do

xrand ← SampleFreei

xnearest ← Nearest(G = (V, E), xrand)
xnew ← Steer(xnearest, xrand)
if ObtacleFree(xnearest, xnew) then

V ← V ∪ {xnew}
E ← E ∪ {(xnearest, xnew)}

return G = (V, E)

Nearest(G, v, r): Finds the nearest vertex
in G from xrand

Steer(x0, xg): Tries to drive the robot from
x0 to xg and returns the point nearest to xg
that it could reach

ObstacleFree(x0,xg): Checks whether the
path from x0 to xg is obstacle free

𝑋'!()𝑋*"#

𝑋'!()𝑋*"#

𝑋'!()𝑋*"#

Voronoi bias
Given n points in d dimensions, the Voronoi diagram of the
points is a partition of Rd into regions, one region per point,
such that all points in the interior of each region lie closer to
that regions site than to any other site.

Try it: http://alexbeutel.com/webgl/voronoi.html

Voronoi bias. Vertices of the RRT that are more “isolated”
(e.g., in unexplored areas, or at the boundary of the explored
area) have larger Voronoi regions—and are more likely to be
selected for extension.

http://alexbeutel.com/webgl/voronoi.html

RRT in action [Frazzoli]
• Talos, the MIT entry to the 2007 DARPA Urban Challenge, relied on an“RRT-like” algorithm

for real-time motion planning and control.

• The devil is in the details: provisions needed for, e.g.,
• Real-time, on-line planning for a safety-critical vehicle with substantial momentum.
• Uncertain, dynamic environment with limited/faulty sensors.

• Main innovations [Kuwata, et al. ’09]
• Closed-loop planning: plan reference trajectories for a closed-loop model of the vehicle under a

stabilizing feedback
• Safety invariance: Always maintain the ability to stop safely within the sensing region.
• Lazy evaluation: the actual trajectory may deviate from the planned one,need to efficiently re-check

the tree for feasibility.

• The RRT-based P+C system performed flawlessly throughout the race.

• https://journals.sagepub.com/doi/abs/10.1177/0278364911406761

https://journals.sagepub.com/doi/abs/10.1177/0278364911406761

Limitations
The MIT DARPA Urban Challenge code, as well as other incremental sampling
methods, suffer from the following limitations:
• No characterization of the quality (e.g., “cost”) of the trajectories returned by the

algorithm.
• Keep running the RRT even after the first solution has been obtained, for as long as

possible (given the real-time constraints), hoping to find a better path than that
already available.
• No systematic method for imposing temporal/logical constraints, such as, e.g., the

rules of the road, complicated mission objectives, ethical/deontic code.
• In the DARPA Urban Challenge, all logics for, e.g., intersection handling, had to be

hand-coded, at a huge cost in terms of debugging effort/reliability of the code.

RRTs and Asymptotic Optimality

• RRTs are great at finding feasible trajectories quickly, however, RRTs are apparently
terrible at finding good trajectories. Why?

• Let YRRTn be the cost of the best path in the RRT at the end of iteration n.

• It is easy to show that YRRTn converges (to a random variable), lim
𝑛→∞

𝑌𝑛𝑅𝑅𝑇 =𝑌∞𝑅𝑅𝑇

where 𝑌∞𝑅𝑅𝑇 is sampled from a distribution with zero mass at the optimum

Theorem [Karaman & Frizzoli`10] (Almost sure sub-optimality of RRTs) If the set of sampled
optimal paths has measure zero, the sampling distribution is absolutely continuous with
positive density in 𝑋𝑓𝑟𝑒𝑒, and d ≥ 2, then the best path in the RRT converges to a sub-
optimal solution almost surely, i.e.,

Pr[𝑌∞𝑅𝑅𝑇 > 𝑐∗] = 1.

Why is RRT not asymptotically optimal?

Root node has infinitely many subtrees that extend at least a
distance 𝜖 away from 𝑥𝑖𝑛𝑖𝑡.
The RRT algorithm “traps” itself by disallowing new better paths
to emerge. Why?

Heuristics such as running the RRT multiple times, running
multiple trees concurrently etc., work better than the standard
RRT, but also result in almost-sure sub-optimality.

A careful rethinking of the RRT algorithm is required for
(asymptotic) optimality.

s

g

RRT will not
connect s to g

Rapidly Exploring Random Graphs (possibly cyclic)
V ← {xinit}; E ← ∅;

for i = 1, . . . , N do

xrand ← SampleFreei;

xnearest ← Nearest(G = (V, E), xrand);

xnew ← Steer(xnearest, xrand) ;

if ObtacleFree(xnearest, xnew) then

Xnear ← Near(G = (V, E), xnew, min{γRRG(log(card V)/ card V)1/d, η}) ;

V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew),(xnew, xnearest)} ;

foreach xnear ∈ Xnear do

if CollisionFree(xnear, xnew) then E ← E ∪ {(xnear, xnew),(xnew, xnear)}

return G = (V, E);

RRG tries to connect the new sample
xnew to all vertices in a ball of radius r
centered at it. (Or just default to the
nearest one if such b all is empty.)

𝑟(𝑐𝑎𝑟𝑑 (𝑉))

= min{𝛾𝑅𝑅𝐺
log 𝑐𝑎𝑟𝑑 𝑉
𝑐𝑎𝑟𝑑 𝑉

1
𝑑
, 𝜂}

The RRT graph is a subgraph of the
RRG graph (which may have cycles)

Theorems [not required for exam]

Probabilistic completeness. Since 𝑉𝑛𝑅𝑅𝐺 = 𝑉𝑛𝑅𝑅𝑇, for all n RRG has the same
completeness properties as RRT, i.e.,

𝑃 𝑟 𝑉𝑛𝑅𝑅𝐺 ∩ 𝑋𝑔𝑜𝑎𝑙 = ∅ = 𝑂 𝑒−𝑏𝑛 .

Asymptotic optimality. If the Near procedure returns all nodes in V within a ball of
volume 𝑉𝑜𝑙 = 𝛾 log 𝑛

𝑛
, 𝛾 > 2𝑑 1 + 1

𝑑
, under some additional technical

assumptions (e.g., on the sampling distribution, on the 𝜖 clearance of the optimal
path, and on the continuity of the cost function), the best path in the RRG converges
to an optimal solution almost surely, i.e.,

Pr[𝑌∞𝑅𝑅𝐺 = 𝑐∗] = 1.

Remarks on RRG

• What is the additional computational load?
• O(log n) extra calls to ObstacleFree compared to RRT

• Key idea in RRG/RRT∗:
• Combine optimality and computational efficiency, it is necessary to attempt

connection to Θ(log N) nodes at each iteration.

• Reduce volume of the “connection ball” as log(N)/N;
• Increase the number of connections as log(N).

• These principles can be used to obtain “optimal” versions of PRM, etc.

Summary and future directions

• State-of-the-art algorithms such as RRT converge to a NON-optimal solution almost-surely

• new algorithms (RRG and the RRT∗), which almost-surely converge to optimal solutions
while incurring no significant cost overhead

• Bibliographical reference: S. Karaman and E. Frazzoli. Sampling-based algorithms for
optimal motion planning. Int. Journal of Robotics Research, 2011. TAlso available at
http://arxiv.org/abs/1105.1186.

• research directions:
• Optimal motion planning with temporal/logic constraints
• Anytime solution of differential games
• Stochastic optimal motion planning (process + sensor noise)
• Multi-agent problems.

𝑋!"#

𝑋!"#

𝑋+!()

𝑋$%$&

Algorithm Prob.
Completeness

Asymptotic
Optimality

Complexity

sPRM Yes Yes O(N)

k-nearest
sPRM

No No O(log N)

RRT Yes No O(log N)

PRM* Yes Yes O(log N)

k-nearest
PRM*

Yes Yes O(log N)

RRG Yes Yes O(log N)

k-nearest
RRG

Yes Yes O(log N)

RRT* Yes Yes O(log N)

k-nearest
RRT*

Yes Yes O(log N)

