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Announcements

• Pitch presentation feedback sent out
• Upcoming events
• Guest lecture: Nov 9th Dr. Qinru Li, Waymo, ECE Alumni (must attend)
• Intermediate check-in with TAs
• How much progress have you made? 
• How well is the team working?

• Midterm 2: Nov 14th 
• Filtering and planning



Planning Outline

• Review
• Uninformed search
• Informed search
• Optimal search: A

• A* Search
• Python Code for search, planning and much more: 

https://github.com/sayanmitracode/PythonRobotics#d-algorithm 

https://github.com/sayanmitracode/PythonRobotics


Slow search can be life or death
Elephants migrate in thousands 
from Okavango delta, Botswana, 
drawn by the need to find water



Uniform cost search (Uninformed search)

𝑄 ← 𝑠𝑡𝑎𝑟𝑡 		 	 	 	 	 	 	 //  maintains paths
        // initialize queue with start
while	𝑄 ≠ ∅:	
     pick 𝑎𝑛𝑑	𝑟𝑒𝑚𝑜𝑣𝑒 	𝑡ℎ𝑒	𝑝𝑎𝑡ℎ	𝑃	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑠𝑡	𝑐𝑜𝑠𝑡	𝑔 = 𝑤 𝑃 	𝑓𝑟𝑜𝑚	𝑄	
     if	ℎ𝑒𝑎𝑑 𝑃 = 	𝑔𝑜𝑎𝑙	then return 𝑃	;	    // Reached the goal 
     foreach	𝑣𝑒𝑟𝑡𝑒𝑥	𝑣	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 	𝐸,	do	  // for all neighbors 
          add	⟨𝑣, 𝑃⟩	𝑡𝑜	𝑄	;	      // Add expanded paths	
return	𝐹𝐴𝐼𝐿𝑈𝑅𝐸	;      // nothing left to consider

Note no visited list; Use no information obtained from the environment



Properties of Uniform Cost Search
UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all 
edges have the same cost) 
UCS is sound, complete and optimal (assuming costs bounded away from 
zero) 
• Exercise: Prove this

UCS is guided by path cost rather than path depth, so it may get in trouble 
if some edge costs are very small

Worst-case time and space complexity 𝑂(𝑏I∗/K), where 𝑊∗	is the optimal 
cost, and 𝜖 is such that all edge weights are no smaller than



Greedy or Best-First Search

UCS explores paths in all directions, with no bias towards the goal state
What if we try to get “closer” to the goal? 
We need a measure of distance to the goal

It would be ideal to use the length of the shortest path... 
but this is exactly what we are trying to compute! 

We can estimate the distance to the goal through a “heuristic function,” ℎ ∶
	𝑉	 → ℝ!". E.g., the Euclidean distance to the goal (as the crow flies)

ℎ(𝑣) is the estimate of the distance from 𝑣 to goal

A reasonable strategy is to always try to move in such a way to minimize the 
estimated distance to the goal: this is the basic idea of the greedy (best-first) 
search



Greedy/Best-first search

𝑄 ← 𝑠𝑡𝑎𝑟𝑡 		 	 	 	 	 	 	 // initialize queue with start

while	𝑄 ≠ ∅:	
     pick 𝑎𝑛𝑑	𝑟𝑒𝑚𝑜𝑣𝑒 	𝑡ℎ𝑒	𝑝𝑎𝑡ℎ	𝑃	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑠𝑡	ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐	𝑐𝑜𝑠𝑡	ℎ(ℎ𝑒𝑎𝑑 𝑃 )	𝑓𝑟𝑜𝑚	𝑄	
     if	ℎ𝑒𝑎𝑑 𝑃 = 	𝑔𝑜𝑎𝑙	then return 𝑃	    // Reached the goal 

     foreach	𝑣𝑒𝑟𝑡𝑒𝑥	𝑣	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 	𝐸,	do	  // for all neighbors 

          add	⟨𝑣, 𝑃⟩	𝑡𝑜	𝑄	;	      // Add expanded paths	
return	𝐹𝐴𝐼𝐿𝑈𝑅𝐸	;      // nothing left to consider



Remarks on greedy/best-first search

Greedy (Best-First) search is similar to Depth-First Search
keeps exploring until it has to back up due to a dead end

Not complete (why?) and not optimal, but is often fast and efficient, 
depending on the heuristic function h 

Exercise: Find a counter-example where path exists but bad heuristic function 
makes the algorithm loop forever

Worst-case time and space complexity?



A search: informed search
The problems 

UCS is optimal, but may wander around a lot before finding the goal
Greedy is not optimal, but can be efficient, as it is heavily biased towards moving 
towards the goal. The non-optimality comes from neglecting “the past.” 

The idea 
Keep track both of the cost of the partial path to get to a vertex, say g(v), and of the 
heuristic function estimating the cost to reach the goal from a vertex, h(v)
In other words, choose as a “ranking” function the sum of the two costs: 

f (v) = g(v) + h(v) 
g(v) cost-to-come (from the start to v)
h(v): cost-to-go estimate (from v to the goal)
f (v): estimated cost of the path (from the start to v and then to the goal)



A search

𝑄 ← 𝑠𝑡𝑎𝑟𝑡 		 	 	 	 	 	 	 // initialize queue with start

while	𝑄 ≠ ∅:	
     pick 𝑎𝑛𝑑	𝑟𝑒𝑚𝑜𝑣𝑒 	 𝑝𝑎𝑡ℎ	𝑃	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑠𝑡	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑐𝑜𝑠𝑡	𝑓 𝑃 = 𝑔 𝑃 + ℎ ℎ𝑒𝑎𝑑 𝑃 	𝑓𝑟𝑜𝑚	𝑄	
     if	ℎ𝑒𝑎𝑑 𝑃 = 	𝑔𝑜𝑎𝑙	then return 𝑃	    // Reached the goal 

     foreach	𝑣𝑒𝑟𝑡𝑒𝑥	𝑣	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 	𝐸,	do	  // for all neighbors 

          add	⟨𝑣, 𝑃⟩	𝑡𝑜	𝑄	;	      // Add expanded paths	
return	𝐹𝐴𝐼𝐿𝑈𝑅𝐸	;      // nothing left to consider

open set and closed set



Example of A search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑎, 𝑠⟩ 2 2 4
⟨𝑏, 𝑠⟩ 5 3 8

c,a,s 4 1 5
d,a,s 6 5 11
d,c,a,s 7 5 12
g,b,s 10 0 10



A and A* search
A search is similar to UCS, with a bias induced by the heuristic h 

If h = 0, A = UCS. No benefit of goal-orientedness

The A search is complete, but is not necessarily optimal
 What is wrong? We just saw an example where h value was too large and biased the 
search away from some good paths

A∗ Search 

Choose an admissible heuristic, i.e., such 𝑡ℎ𝑎𝑡	ℎ(𝑣) 	≤ ℎ∗(𝑣)
ℎ∗(𝑣) is the “optimal” heuristic---perfect cost to go---we do not know this
To be admissible ℎ(𝑣)	 should be at most ℎ∗(𝑣) 
A search with an admissible heuristic is called A* --- guaranteed to find optimal path



Example of A* search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑠⟩ 0 6 6
a,s 2 2 4
b,s 5 3 8
c,a,s 4 1 5
d,a,s 6 1 7
d,c,a,s 7 1 8
g,b,s 10 0 10
g,d,a,s 8 0 8
g,d,c,a,s 9 0 9



Proof of optimality of A*

• Let w* be the cost of the optimal path from s to g
• Suppose for the sake of contradiction, that A* returns P with w(P) > w*
• Find the first added but unexpanded node on the optimal path P*; call it n
• f(n) > w(P), otherwise n would have been expanded
• f(n) = g(n) + h(n)
 = g*(n) + h(n) [since n is on the optimal path]
 <= g*(n) + h*(n) [since h is admissible]
 = f*(n) = w*  [by def. of f, since w* is the cost of optimal path] 
• Hence w* >= f(n) = w(P), which is a contradiction

s g
P

n

P*



Admissible heuristics
• How to find an admissible heuristic? i.e., a heuristic that never 

overestimates the cost-to-go.
• Examples of admissible heuristics 
• ℎ(𝑣) 	= 	0: this always works! However, it is not very useful,  A∗ = UCS
• ℎ(𝑣) 	= 	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑔) when the vertices of the graphs are physical locations 
• ℎ(𝑣) 	= 𝑣	 − 	𝑔 ! , when the vertices of the graph are points in a normed 

vector space
• A general method 
• Choose h as the optimal cost-to-go function for a relaxed problem, that is easy 

to compute 
• Relaxed problem: ignore some of the constraints in the original problem



Admissible heuristics for the 8-puzzle

Which of the following are admissible 
heuristics? 
• h = 0
• h = 1
• h = number of tiles in the wrong 

position
• h = sum of (Manhattan) distance 

between tiles and their goal position

YES, always good 

not valid in goal state 

YES, “teleport” each tile to the goal in one move 

YES, move each tile to the goal ignoring other tiles.



Applying A* for shortest path path planning

• Graph: Grid 2D plane, edges to 
neighboring vertices except obstacles 
• Note vertices are not known ahead of 

time  
• More interesting motion models 

could be added
• Heuristic: Euclidean distance to goal
• Cyan points are the searched nodes
• Try other heuristics, UCS
• Run codehttps://github.com/AtsushiSakai/PythonRoboti

cs/tree/master



A partial order of heuristic functions
• Some heuristics are better than others 

• h = 0 is an admissible heuristic, but is not very useful
• h = h* is also an admissible heuristic, and it the “best” possible one (it give us the 

optimal path directly, no searches/backtracking) 

• Partial order 
• We say that ℎ" dominates ℎ# if ℎ"(𝑣) 	≥ 	 ℎ#(𝑣) for all vertices v 
• ℎ∗ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

• Choosing the right heuristic 
• In general, we want a heuristic that is as close to h ∗ as possible
• However, such a heuristic may be too complicated to compute
• There is a tradeoff between complexity of computing ℎ	and the complexity of the 

search



Consistent heuristics

• An additional useful property for A∗ heuristics is called consistency 
• A heuristic ℎ ∶ 	𝑋	 → 	ℝ"#	is said consistent if ℎ(𝑢) 	≤ 	𝑤	(𝑒	 = 	 (𝑢, 𝑣)) 	+
	ℎ(𝑣), ∀(𝑢, 𝑣) 	∈ 	𝐸
• In other words, a consistent heuristics satisfies a triangle inequality 

• If h is a consistent heuristics, then 𝑓	 = 	𝑔	 + 	ℎ	is non-decreasing 
along paths:

	𝑓 𝑣 = 	𝑔 𝑣 + 	ℎ 𝑣 = 	𝑔 𝑢 + 	𝑤 𝑢, 𝑣 + 	ℎ 𝑣 ≥ 	𝑓 𝑢
• Hence, the values of f on the sequence of nodes expanded by A∗ is 

non-decreasing: the first path found to a node is also the optimal path 
⇒ no need to compare costs!



A* to hybrid A*

• Recall free-form planning problem as search
• Vertices = discretized state/cell; edges to neighbors except 

obstacles

• A* associates costs with cell center
• Problem: Resulting discrete plan cannot be executed by a vehicle

• Field D* (Ferguson and Stentz, 2005) associates cost with 
cell corners and allows arbitrary linear paths between cells
• Hybrid A* associates a continuous state with each cell  
• Such that the continuous coordinate can be realized by the vehicle

A*

D*

hybrid A*

Read Junior paper Sec 6.3: http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf


Hybrid A*
• Let 𝑥, 𝑦, 𝜃 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑑𝑖𝑟 (fwd,rev) be the current state of the vehicle

• Suppose these coordinates lie in cell 𝑐𝑖 in the A* representation

• Then we will associate 𝑐𝑖 with coordinates 𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦, 𝜃𝑖 = 𝜃, 𝑑𝑖𝑟𝑖 = 𝑑𝑖𝑟

• Next, suppose the vehicle applies control input u and the resulting state is 
⟨𝑥′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′⟩ and this falls in cell 𝑐𝑗
• That is 𝑥 ′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′ = 𝑓( 𝑥 ′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′ , 𝑢) where 𝑓 is the dynamic vehicle model

• If this is the first time 𝑐𝑗 is visited then it is assigned coordinates 𝑥′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′ 

• Always constructs realizable paths, but it is not complete
• Coarser the discretization, it is more likely hybrid A* will fail

⟨𝑥, 𝑦, 𝜃, 𝑑𝑖𝑟⟩ 

⟨𝑥′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′⟩ 

𝑐2

𝑐3



Heuristic functions in hybrid A*
• Euclidean distance

• Nonholonomic without obstacles
• Ignores obstacles but takes into account the 

non-holonomic dynamics
• Can be computed offline
• Fails in U-shaped dead-ends

• Holonomic with obstacles
• Ignores the non-holonomic dynamics but 

includes obstacles
• Computed online using 2D grid

• Both are admissible, could use the max of 
the two



Summary

• A* algorithm combines cost-to-come g(v) and a heuristic function h(v) 
for cost-to-go to find shortest path
• informed search

• heuristic function must be admissible ℎ(𝑣) 	≤ ℎ∗(𝑣)
• Never over-estimate the actual cost to go
• Are all ℎ(𝑣) values needed ? 
• What if ℎ is not admissible
• When does one heuristic dominate another
• What are consistent heuristics

• Hybrid A* to account for infeasible paths


