
Search and Planning
ECE 484 Fall 2023

Sayan Mitra



Autonomy 
pipeline

Control

Dynamical models of 
engine, powertrain, 
steering, tires, etc.

Decisions and 
planning

Programs and multi-
agent models of 

pedestrians, cars, 
etc. 

Perception

Programs for object 
detection, lane 
tracking, scene 

understanding, etc.

Sensing

Physics-based 
models of camera, 

LIDAR, RADAR, GPS, 
etc.

GEM platform



Control

Dynamical models of 
engine, powertrain, 
steering, tires, etc.

Decisions and 
planning

Programs and multi-
agent models of 

pedestrians, cars, 
etc. 

Perception

Programs for object 
detection, lane 
tracking, scene 

understanding, etc.

Sensing

Physics-based 
models of camera, 

LIDAR, RADAR, GPS, 
etc.



Search and planning problems appear in different 
levels of autonomy stack
Global path planner --- invoked at each new checkpoint
• finds paths from every point in the map to next checkpoint
• dynamic programming 

Road navigation
• For each path, the planner rolls out several discrete trajectories 

that are parallel to the smoothed center of the lane

Freeform navigation (parking lots)
• Generate arbitrary trajectories (irrespective of road structure) 

using modified A*

Junior: The Stanford Entry in the Urban Challenge, Thrun et al., 2008



Outline

• Uninformed search
• Informed search
• Optimal search: A, A*



Starting from uninformed graph search

Search for collision free trajectories can be converted to graph 
search

We can solve such problems using the graph search algorithms like 
(uninformed) Breadth-First Search and Depth-First Search

However, roadmaps are not just “generic” graphs
Some paths are more preferable than others (e.g., shorter, faster, less 
costly in terms of fuel/tolls/fees, more stealthy, etc.). 
Distances have a physical meaning
Good guesses for distances can be made, even without knowing optimal 
paths

Can we utilize this information to find efficient paths, efficiently?

https://kmmille.github.io/FACTEST/

Making a Drone Smarter With Motion 
Planning Nicholas Rehm

https://www.youtube.com/@NicholasRehm


Problem statement: find shortest path
Input: ⟨𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙⟩

• 𝑉: (finite) set of vertices 
• 𝐸 ⊆ 𝑉 × 𝑉: (finite) set of edges
• 𝑤 ∶ 𝐸 → ℝ!": associates to each edge 𝑒 to a strictly positive 

weight 𝑤(𝑒) (cost, length, time, fuel, prob. of detection)
• 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙 ∈ 𝑉: respectively, start and end vertices. 

Output: ⟨𝑃⟩
• 𝑃 is a path (starting in start and ending in goal, such that its 

weight 𝑤(𝑃) is minimal among all such paths 
• The weight of a path is the sum of the weights of its edges
• The graph may be unknown, partially known, or known

s

c

s

d

b

g

2 3
4 2

2
5 5



Many paths and all weights are often not 
known upfront



The Graph Can be Large

Number of states or vertices 
43,252,003,274,489,856,000

Yet, maximum length of path to solution was 
shown to be 20, regardless of the initial state.

T. Rokicki, working with Google, proved "God's 
number" to be 20, in 2010.

https://en.wikipedia.org/wiki/God%27s_algorithm
https://en.wikipedia.org/wiki/God%27s_algorithm


Search Algorithm Performance Metrics

Soundness: when a solution is returned, is it guaranteed to be correct path?
Completeness: is the algorithm guaranteed to find a solution when one exists?
Optimality: How close is the found solution to the best solution? 
Space complexity: how much memory is needed?
Time complexity: what is the running time? Can it be used for online planning?



Uniform cost search (Uninformed search)

𝑄 ← 𝑠𝑡𝑎𝑟𝑡 //  maintains paths
// initialize queue with start

while 𝑄 ≠ ∅:
pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑠𝑡 𝑔 = 𝑤 𝑃 𝑓𝑟𝑜𝑚 𝑄
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 ; // Reached the goal 
foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors 

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths
return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

Note no visited list; Use no information obtained from the environment



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨𝑠⟩ 0



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨𝑎, 𝑠⟩ 2

⟨𝑏, 𝑠⟩ 5



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost



Properties of Uniform Cost Search
UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all 
edges have the same cost) 
UCS is sound, complete and optimal (assuming costs bounded away from 
zero) 
• Exercise: Prove this

UCS is guided by path cost rather than path depth, so it may get in trouble 
if some edge costs are very small

Worst-case time and space complexity 𝑂(𝑏P∗/R), where 𝑊∗ is the optimal 
cost, and 𝜖 is such that all edge weights are no smaller than



Greedy or Best-First Search

UCS explores paths in all directions, with no bias towards the goal state
What if we try to get “closer” to the goal? 
We need a measure of distance to the goal

It would be ideal to use the length of the shortest path... 
but this is exactly what we are trying to compute! 

We can estimate the distance to the goal through a “heuristic function,” ℎ ∶
𝑉 → ℝ!". E.g., the Euclidean distance to the goal (as the crow flies)

ℎ(𝑣) is the estimate of the distance from 𝑣 to goal

A reasonable strategy is to always try to move in such a way to minimize the 
estimated distance to the goal: this is the basic idea of the greedy (best-first) 
search



Greedy/Best-first search

𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize queue with start

while 𝑄 ≠ ∅:
pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑐𝑜𝑠𝑡 ℎ(ℎ𝑒𝑎𝑑 𝑃 ) 𝑓𝑟𝑜𝑚 𝑄
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 // Reached the goal 

foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors 

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths

return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨𝑠⟩ 0 10



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨𝑠⟩ 0 10



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨𝑎, 𝑠⟩ 2 2

⟨𝑏, 𝑠⟩ 5 3



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨𝑠⟩ 0 10



Remarks on greedy/best-first search

Greedy (Best-First) search is similar to Depth-First Search
keeps exploring until it has to back up due to a dead end

Not complete (why?) and not optimal, but is often fast and efficient, 
depending on the heuristic function h 

Exercise: Find a counter-example where path exists but bad heuristic function 
makes the algorithm loop forever

Worst-case time and space complexity?



A search: informed search
The problems 

UCS is optimal, but may wander around a lot before finding the goal
Greedy is not optimal, but can be efficient, as it is heavily biased towards moving 
towards the goal. The non-optimality comes from neglecting “the past.” 

The idea 
Keep track both of the cost of the partial path to get to a vertex, say g(v), and of the 
heuristic function estimating the cost to reach the goal from a vertex, h(v)
In other words, choose as a “ranking” function the sum of the two costs: 

f (v) = g(v) + h(v) 
g(v) cost-to-come (from the start to v)
h(v): cost-to-go estimate (from v to the goal)
f (v): estimated cost of the path (from the start to v and then to the goal)



A search

𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize queue with start

while 𝑄 ≠ ∅:
pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑓 𝑃 = 𝑔 𝑃 + ℎ ℎ𝑒𝑎𝑑 𝑃 𝑓𝑟𝑜𝑚 𝑄
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 // Reached the goal 

foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors 

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths

return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

open set and closed set



Example of A search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑠⟩ 0 10 10



Example of A search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑎, 𝑠⟩ 2 2 4

⟨𝑏, 𝑠⟩ 5 3 8



Example of A search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑎, 𝑠⟩ 2 2 4

⟨𝑏, 𝑠⟩ 5 3 8



Remarks on A search

A search is similar to UCS, with a bias induced by the heuristic h 
If h = 0, A = UCS. 
The A search is complete, but is not optimal

What is wrong? (Recall that if h = 0 then A = UCS, and hence optimal...)
A∗ Search 
Choose an admissible heuristic, i.e., such 𝑡ℎ𝑎𝑡 ℎ(𝑣) ≤ ℎ∗(𝑣)

ℎ∗(𝑣) is the “optimal” heuristic---perfect cost to go
To be admissible ℎ(𝑣) should be at most ℎ∗(𝑣)
A search with an admissible heuristic is called A* --- guaranteed to find optimal 
path



Example of A* search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑠⟩ 0 6 6



Proof of optimality of A*

Let w* be the cost of the optimal path
Suppose for the sake of contradiction, that A* returns P with w(P) > w*
Find the first unexpanded node on the optimal path P*; call it n
f(n) > w(P), otherwise n would have been expanded
f(n) = g(n) + h(n)

= g*(n) + h(n) [since n is on the optimal path]
<= g*(n) + h*(n) [since h is admissible]
= f*(n) = w* [by def. of f, and since w* is the cost of the optimal path] 

Hence w* >= f(n) = w(P), which is a contradiction



Admissible heuristics

• How to find an admissible heuristic? i.e., a heuristic that never 
overestimates the cost-to-go.
• Examples of admissible heuristics 

• ℎ(𝑣) = 0: this always works! However, it is not very useful,  A∗ = UCS
• ℎ(𝑣) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑔) when the vertices of the graphs are physical locations 
• ℎ(𝑣) = 𝑣 − 𝑔 ! , when the vertices of the graph are points in a normed vector 

space

• A general method 
• Choose h as the optimal cost-to-go function for a relaxed problem, that is easy to 

compute 
• Relaxed problem: ignore some of the constraints in the original problem



Admissible heuristics for the 8-puzzle

Which of the following are admissible 
heuristics? 
• h = 0
• h = 1
• h = number of tiles in the wrong 

position
• h = sum of (Manhattan) distance 

between tiles and their goal position

YES, always good 

not valid in goal state 

YES, “teleport” each tile to the goal in one move 

YES, move each tile to the goal ignoring other tiles.



A partial order of heuristic functions

• Some heuristics are better than others 
• h = 0 is an admissible heuristic, but is not very useful
• h = h* is also an admissible heuristic, and it the “best” possible one (it give us the 

optimal path directly, no searches/backtracking) 
• Partial order 

• We say that ℎ" dominates ℎ# if ℎ"(𝑣) ≥ ℎ#(𝑣) for all vertices v 
• ℎ∗ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

• Choosing the right heuristic 
• In general, we want a heuristic that is as close to h ∗ as possible
• However, such a heuristic may be too complicated to compute
• There is a tradeoff between complexity of computing ℎ and the complexity of the 

search



Consistent heuristics

• An additional useful property for A∗ heuristics is called consistency
• A heuristic ℎ ∶ 𝑋 → ℝ"# is said consistent if ℎ(𝑢) ≤ 𝑤 (𝑒 = (𝑢, 𝑣)) +
ℎ(𝑣), ∀(𝑢, 𝑣) ∈ 𝐸

• In other words, a consistent heuristics satisfies a triangle inequality 

• If h is a consistent heuristics, then 𝑓 = 𝑔 + ℎ is non-decreasing 
along paths: 𝑓 𝑣 = 𝑔 𝑣 + ℎ 𝑣 = 𝑔 𝑢 + 𝑤 𝑢, 𝑣 + ℎ 𝑣 ≥
𝑓 𝑢

• Hence, the values of f on the sequence of nodes expanded by A∗ is 
non-decreasing: the first path found to a node is also the optimal 
path ⇒ no need to compare costs!



Hybrid A*

• Represent vehicle state in a uniform discrete grid
• 4D grid: 𝑥, 𝑦, 𝜃 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑑𝑖𝑟 (fwd,rev)

• If the current coordinate is ⟨𝑥, 𝑦, 𝜃⟩ and those coordinates lie in cell 
𝑐# then the representative continuous state for cell 𝑐# will be 𝑥# =
𝑥, 𝑦# = 𝑦, 𝜃# = 𝜃
• After applying control input 𝑢 to vehicle, suppose the predicted 

state is 𝑥′, 𝑦′, 𝜃′
• 𝑥%, 𝑦%, 𝜃% = 𝑓 𝑥, 𝑦, 𝜃, 𝑢 ; 𝑥̇ = ⋯
• representative for 𝑐& = 𝑥%, 𝑦%, 𝜃%
• This defines a transition from 𝑐' to 𝑐&

• More details in the next lecture

(a) 

open cells: cells that are accessible from root
and closed cells



Summary

• A* algorithm combines cost-to-come g(v) and a heuristic function h(v) 
for cost-to-go to find shortest path
• informed search

• heuristic function must be admissible ℎ(𝑣) ≤ ℎ∗(𝑣)
• Never over-estimate the actual cost to go
• Are all ℎ(𝑣) values needed ? 
• What if ℎ is not admissible
• How to find heuristics



Next: Dynamic programming/Dijkstra

• The optimality principle 
• Let P = (s, . . . , v, . . . g) be an optimal path (from s to g). 
• Then, for any v ∈ P, the sub-path S = (v, . . . , g) is itself an optimal path (from v 

to g) 

• Using the optimality principle 
• Essentially, optimal paths are made of optimal paths. Hence, we can construct 

long complex optimal paths by putting together short optimal paths, which 
can be easily computed. Fundamental formula in dynamic programming: h ∗
(u) = min (u,v)∈E [w( (u, v) ) + h ∗ (v)] . Typically, it is convenient to build 
optimal paths working backwards from the goal.


