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Lecture 13: 

Kalman filter and SLAM
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Slides: From the book’s website



Filtering, estimation

• Kalman filter
• Overview of SLAM



Particle filtering algorithm 

𝑋! = 𝑥!
[#], 𝑥!

[%], … 𝑥!
[&] particles

Algorithm Particle_filter(𝑋!'#, 𝑢! , 𝑧!):(𝑋! = 𝑋! = ∅
for all 𝑚 in [M] do:

sample 𝑥!
[(]~𝑝 𝑥! 𝑢! , 𝑥!'#

[(])

𝑤!
[(] = 𝑝 𝑧! 𝑥!

(

(𝑋! = (𝑋! + ⟨ 𝑥!
( , 𝑤!

[(]⟩
end for
for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

𝑥!
[#] is selected with probability prop. to belief 𝑝 𝑥! 𝑧%:! , 𝑢%:!)

'𝑋! is the temporary particle set

Uses state transition distribution

Calculates importance factor 𝑤! or weight using measurement model 

resampling or importance sampling according to 𝜂 𝑝 𝑧! 𝑥!
[#] 𝑏𝑒𝑙 𝑥!

survival of fittest: moves/adds particles to parts of the state space with 
higher probability

Nonparametric method

Heavy computation

Can handle nonlinear models 

Does not rely on analytical expression for distributions

Convergence guarantees only under assumptions on #partilesà infinity



How to estimate state if you have
- you have linear model of system 

and measurement
- hard limit on computation
- Need stronger convergence 

guarantees

Kalman Filter: State estimation 
algorithm for linear systems with 
Gaussian uncertainty

Nonparametric method
Heavy computation
Can handle nonlinear models 
Does not rely on analytical expression for 
distributions
Convergence guarantees only under 
assumptions on #partilesà infty



Gaussians
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Multivariate Gaussians
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Every single variable 𝑥! in 𝑥 has a normal distribution 
𝑁(𝜇! , 𝜎!)

If the variables are uncorrelated then the covariance matrix 
Σ will be a diagonal matrix with the diagonal terms {𝜎!"}
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Properties of Gaussians
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Closed under linear transformations: Linear transformations of Gaussians are Gaussians

Products of independent Gaussians are Gaussians



We stay in the “Gaussian world” as long as we start with Gaussians and perform only 
linear transformations.
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Discrete Kalman Filter

tttttt uBxAx e++= -1

tttt xCz d+=

Estimates the state x of a Discrete Linear Time 
Invariant System with Gaussian noise

with a measurement 



What is a Kalman Filter?
Suppose we have a system that is governed by a linear difference 
equation:

𝑥! = 𝐴!𝑥!"# + 𝐵!𝑢! + 𝜖!
with measurement

𝑧! = 𝐶!𝑥! + 𝛿!
• Tracks the estimated state of the system by the mean and variance of 

its state variables -- minimum mean-square error estimator
• Computes the Kalman gain, which is used to weight the impact of new 

measurements on the system state estimate against the predicted 
value from the process model

• Note that we no longer have discrete states or measurements!

𝜖#~ 𝑁 0, R$ ; 𝛿#~𝑁(0, 𝑄#)
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Components of a Kalman Filter

te

Matrix (nxn) that describes how the state evolves from t to t-
1 without controls or noise.tA

Matrix (nxl) that describes how the control ut changes the 
state from t to t-1.tB

Matrix (kxn) that describes how to map the state xt to an 
observation zt.

tC

td

Random variables representing the process and 
measurement noise that are assumed to be independent 
and normally distributed with covariance Rt and Qt
respectively.



Linear Gaussian System: Dynamics

𝑥! = 𝐴!𝑥!"# + 𝐵!𝑢! + 𝜖!
//Dynamic model: 𝑝 𝑥! 𝑥!"#, 𝑢!) = 𝑁(𝐴!𝑥!"# + 𝐵!𝑢! , 𝑅!)
𝑏𝑒𝑙 𝑥!"# = 𝑁(𝑥!"#; 𝜇!"#, 𝛴!"#)
Prediction step
𝑏𝑒𝑙 𝑥! = ∫ 𝑝 𝑥! 𝑢! , 𝑥!"# 𝑏𝑒𝑙 𝑥!"# 𝑑𝑥!"#
…

= {
𝜇̅! = 𝐴!𝜇!"# + 𝐵!𝑢!
<Σ! = 𝐴!Σ!"#𝐴!$ + 𝑅!



Linear Gaussian System: Observations

• 𝑧! = 𝐶!𝑥! + 𝛿! // 𝑝 𝑧! 𝑥!) = 𝑁(𝑧!; 𝐶!𝑥! , 𝑄!)
Correction step
𝑏𝑒𝑙 𝑥! = 𝜂 𝑝 𝑧! 𝑥! 𝑏𝑒𝑙 𝑥!
…

= {
𝜇! = 𝜇̅! + 𝐾!(𝑧! − 𝐶! 𝜇̅!)
Σ! = 𝐼 − 𝐾!𝐶! <Σ!

where 𝐾! = CΣ!𝐶! 𝐶! <Σ! 𝐶!$ + 𝑄! "# is called the Kalman gain



Kalman Filter Algorithm

1. Algorithm Kalman_Filter(𝜇!"#, Σ!"#, 𝑢! , 𝑧!):
2. Prediction

1. #𝜇2 = 𝐴2𝜇234 + 𝐵2𝑢2
2. +Σ2 = 𝐴2Σ234𝐴25 + 𝑄2

3. Correction:
1. 𝐾2 = #Σ2C25 𝐶2 +Σ2𝐶25 + 𝑅2 34

2. 𝜇2 = 𝜇̅2 + 𝐾2(𝑧2 − 𝐶2𝜇̅2)
3. Σ2 = 𝐼 − 𝐾2𝐶2 +Σ2

4. Return 𝜇!,Σ!



Prediction:
1. 8𝜇# = 𝐴#𝜇#%& + 𝐵#𝑢#
2. ?Σ# = 𝐴#Σ#%&𝐴#' + 𝑄#

Correction:
1. 𝐾# = 8Σ#C#' 𝐶# ?Σ#𝐶#' + 𝑅# %&

2. 𝜇# = 𝜇̅# + 𝐾#(𝑧# − 𝐶#𝜇̅#)
3. Σ# = 𝐼 − 𝐾#𝐶# ?Σ#

Apply control action

Get sensor measurement



Kalman Filter Example
tim

e 
= 

1
tim

e 
= 

2



Who was Rudolf Kalman?
• Kálmán was one of the most influential people on control theory 

and is most known for his co-invention of the Kalman filter (or 
Kalman-Bucy Filter)

• The filtering approach was initially met with vast skepticism, so 
much so that he was forced to do the first publication of his 
results in mechanical engineering, rather than in electrical 
engineering or systems engineering

• This worked out fine as some of the first use cases was with 
NASA on the Apollo spacecraft 

• Kalman filters are inside every robot, commercial airplanes, uses 
in seismic data processing, nuclear power plant instrumentation, 
and demographic models, as well as applications in 
econometrics

Image Credit: Wikipedia
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§ SLAM: simultaneous localization and mapping
§ The task of building a map while estimating 

the pose of the robot relative to this map
§ Robot does not have a map, unlike in localization

§ Why is SLAM hard?
Chicken and egg problem: 
a map is needed to localize the robot and 
a pose estimate is needed to build a map

The SLAM Problem
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Given:
• The robot’s controls

• Observations of nearby features

Estimate:
• Map of features

• Path of the robot

The SLAM Problem
A robot moving though an unknown, static environment
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SLAM Applications
Indoors

Space

Undersea

Underground



Forms of SLAM

• State / history
• Online SLAM: 𝑝 𝑥2, 𝑚 𝑧4:2, 𝑢4:2)
• Full SLAM: 𝑝 𝑥4:2, 𝑚 𝑧4:2, 𝑢4:2)

• Continuous or discrete correspondence variables
• 𝑝 𝑥2, 𝑚, 𝑐2 𝑧4:2, 𝑢4:2)

• Many algorithms: EKFSLAM, GraphSLAM, FastSLAM



Online SLAM

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
control inputs (u), 
measurements(z). 

White nodes to be determined (x,m)



Full SLAM

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
control inputs (u), measurements(z). 

White nodes to be determined (x,m)
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Representations

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Why is SLAM a hard problem?
SLAM: robot path and map are both unknown

Robot path error correlates errors 
in the map
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Why is SLAM a hard problem?

• In the real world, the mapping between observations and landmarks is 
unknown

• Picking wrong data associations can have catastrophic consequences
• Pose error correlates data associations

Robot pose
uncertainty
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SLAM: 
Simultaneous Localization and Mapping

• Full SLAM:

• Online SLAM:

Integrations typically done one at a time 

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( -ò ò ò= ttttttt dxdxdxuzmxpuzmxp 

Estimates most recent pose and map!

Estimates entire path and map!
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Data Association Problem

• A data association is an assignment of observations to landmarks
• In general there are more than 

(n observations, m landmarks) possible associations
• Also called “assignment problem”
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§ A particle filter can be used to solve both problems

§ Localization: state space < x, y, q>

§ SLAM: state space < x, y, q, map>
§ for landmark maps = < l1, l2, …, lm>
§ for grid maps = < c11, c12, …, c1n, c21, …, cnm>

§ Problem: The number of particles needed to represent a 
posterior grows exponentially with the dimension of the state 
space!

Localization vs. SLAM



• Naïve implementation of particle filters to SLAM will be crushed by the 
curse of dimensionality

30
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§ Is there a dependency between the dimensions of the state space?
§ If so, can we use the dependency to solve the problem more 

efficiently?

Dependencies 
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§ Is there a dependency between the dimensions of the state space?
§ If so, can we use the dependency to solve the problem more 

efficiently?

§ In the SLAM context
§ The map depends on the poses of the robot.
§ We know how to build a map given the position of the sensor is 

known.

Dependencies



Conditional Independence

• A and B are conditionally independent given C if 
P(A, B | C) = P(A|C) P(B|C)

• Height and vocabulary are not independent
• But they are conditionally independent given age

33
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Factored Posterior (Landmarks)

SLAM posterior
Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999
Does this help to solve the problem?

poses map observations & movements
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Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Knowledge of the robot’s true path renders landmark positions 
conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls

x1 x2 xt

u1 ut-1

l2

l1

z1

z2

x3

u
1

z3

zt

Landmark 2

x0

u0 
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Factored Posterior

Robot path posterior
(localization problem) Conditionally 

independent 
landmark positions
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Rao-Blackwellization

§ This factorization is also called Rao-Blackwellization
§ Given that the second term can be computed 

efficiently, particle filtering becomes possible!



David Harold Blackwell (1919-2010)

Independently developed dynamic programming. 
Several theorems that bear his name, including the 
Blackwell renewal theorem, used in engineering, and 
the Rao-Blackwell theorem in statistics.

University of Illinois at Urbana-Champaign (BA, MA, 
PhD 1941)

photo from stat.illinois

https://www.merriam-webster.com/dictionary/dynamic
https://stat.illinois.edu/news/2020-07-17/david-h-blackwell-profile-inspiration-and-perseverance
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FastSLAM
§ Rao-Blackwellized particle filtering based on landmarks     

[Montemerlo et al., 2002]
§ Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
§ Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, q

Landmark 1 Landmark 2 Landmark M…x, y, qParticle #1

Landmark 1 Landmark 2 Landmark M…x, y, qParticle #2

Particle N

…

https://en.wikipedia.org/wiki/David_Blackwell
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  - Video
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FastSLAM  Complexity

• Update robot particles based on control ut-1

• Incorporate observation zt into Kalman filters

• Resample particle set

N = Number of particles
M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle
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Data Association Problem

• A robust SLAM must consider possible data associations 
• Potential data associations depend also on the pose of the robot 

§ Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

• Data association is done on a per-
particle basis

• Robot pose error is factored out of 
data association decisions
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Per-Particle Data Association

Was the observation
generated by the red
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

§ Two options for per-particle data association
§ Pick the most probable match
§ Pick an random association weighted by 

the observation likelihoods

§ If the probability is too low, generate a new landmark
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Results – Victoria Park
• 4 km traverse
• < 5 m RMS position 

error
• 100 particles

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM
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Results – Victoria Park

Dataset courtesy of University of Sydney

https://www.youtube.com/watch?v=BIOJSNHYSbc



Conclusions FastSLAM

• Maintain set of particles
• Each particle contains s sampled robot path and a map
• Each feature in the map represented by local gaussian
• Result linear is size of map and number of particles

• Trick is to represent map as a set of separate Gaussians instead of a 
giant joint distribution

• Possible because of conditional independence given a path

• Update rule similar to conventional particle filter
• Each particle can be based on a different data association


