éo

Principles of Safe Autonomy:
Lecture 12-13:
Filtering and Robot Localization

Sayan Mitra
2023

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book’s website

4o

Announcements

* Exam1 Regrade & Resubmit due: 10/13
* Pitch Presentation: 10/24, 10/26
* MP3 Due: 10/27

* For GEM and F1-Tenth groups, finish 3 Safety Training Online &
upload safety training certificate to box ASAP

* More details on campuswire

éo

Review from last time: Beliefs

Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state x;

bel(x;) = p(x¢|z1.e, U1:t)
Posterior distribution over state at time t given all past measurements and control.

This will be calculated in two steps:
1. Prediction: bel(xy) = p(x¢|Z1.r—1, Uq.t)

2. Correction: Calculating bel(x;) from bel(x;) a.k.a measurement update

éo

Recursive Bayes Filter

Algorithm Bayes_filter(bel(x;_1), u;, z;)

for all x; do:
bel(x;) = fp(xt|ut,xt;1)bel(xt—1)dxt—1
bel(x;) = n p(z:|x;) bel(x;)

end for

return bel(x;)

2\ plxelug, 2) e
b2 Q,

9 p(x¢|ug, 3) p(z:]x;)

Histogram Filter or Discrete Bayes Filter

éo

Finitely many states x;, x;, etc. Random state vector X;
Pk ¢ belief at time t for state xj; discrete probability distribution
Algorithm Discrete_Bayes_filter({py ;_1}, us, 2¢):
for all k do:
Prt = iP(Xe = xplue Xe—1 = x)Dit—1
Pre = NP2 | Xy = X)) Pt
end for

return {pk’t}

bel(x;_1) m(xt—l)

@ p(xe|ug, 3)

p(Zt|xt),,

Piecewise Constant Representation of beliefs

can compute the new

Fixing an input u, we
belief

T A LA S S S

s S S s T S

0

(0,0,0)

éo

Outline of filtering module

* Particle filter
* Nonparametric representation of distributions with samples
* Weighted particles
* Importance sampling

* Monte Carlo localization
* Examples
 Conclusions

éo

Robot posilion (A)

! JAY: . A
7 \‘,:;, S seS Lol s I3m .'\

\ \ _ ! age
/ A / W\ W Robot pesition (B)
/ /N) \

" Robot pesition (C)

Monte Carlo Localization

Represents beliefs by particles

éo

Particle Filters

®* Represent belief by finite number of parameters (just like histogram filter)

® But, they differ in how the parameters (particles) are generated and populate

the state space

* Key idea: represent belief bel(x;) by a random set of state samples

®* Advantages

®* The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

® Can handle nonlinear tranformations

®* Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap

filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d

éo

Particle filtering algorithm

X = xl[l],xt[z], ...xEM] particles

Algorithm Particle_filter(X,;_1, u;, z¢):
Xe1=X=0

for allmin [M] do:

sample xl[m] ~p(xeluy, xt[r—nb

w™ = p (zt|x£m])

X, =X, + (2™, w™)
end for
for allmin [M] do:

draw i with probability « Wt[i]

add x4 to X,
end for

return X;

ideally, xim] is selected with probability prop. to
(Xt | Z1:4, Ug:t)

X;_q is the temporary particle set

// sampling from state transition dist.

// calculates importance factor w; or weight

// resampling or importance sampling; these are
distributed accordington p (Zt‘xt[m]) bel(x;)

// survival of fittest: moves/adds particles to parts of

the state space with higher probability

Importance Sampling

suppose we want to compute E¢[I(x € A)] but
we can only sample from density g

Er[I(x € A)]

= [f(x)I(x € A)dx

= %g(x)](x € A)dx, provided g(x) > 0

= fw()g(x)I(x € A)dx
=E [w()I(x € A)]

We need f(x) > 0= g(x) >0

vvvvvvvvvvvvvvvvvvvvv

.......................

Weight samples: w =f/g

éo

éo

Monte Carlo Localization (MCL)

X = xl[l],xt[z], ...xEM] particles

Algorithm MCL(X;_, u¢, z¢,m):
Xe1=X=0

for allmin [M] do:

x,{m] = sample_motion_model(u; xfﬂ)
Wt[m] = measurement_model(z,, me]'m)

X, =X, + (2™ w™)
end for
for allmin [M] do:

[2]

draw i with probability < w;

add x4 to X,
end for

return X;

Plug in motion and measurement models
in the particle filter

Particle Filters

(8

Sensor Information: Importance Sampling

[

p(s)

T UNT SO T TN T A T 1 T ™

J

(g

Robot Motion

Sensor Information: Importance Sampling

(NN N (NN (N (N NN NN N - (NN N N (N (N (N N N (NN (NN NN N N N NN N (N (N (N NN NN (NN N
1 1 1 & ¥ @ 1 | | | I . 1 1 1 F & & & ¥ ¥ 1 |) 1 1 1 ¥ 1 1§ | § |
(NN N (N (N (N N NN N 1] (NN NN N (N (N (N N NN (NN (N (NN NN N (NN N N (N (N (NN N (NN (NN N

[

p(s)
| LI L O A 11 (O L O O M OONY [WU NN N [O o {1 [Al 10 o S

("0

(g

Robot Motion

'
(NN (N (N (NN N (NN NN NN 1] (NN NN N (N (N (N N NN (NN (N (NN NN N (NN N N (N (N (NN N (NN (NN N

)
1 1 | (I [[1] I I e [Il | (N (1 0 o 1 W1 oy

(¢

(C

AN

5N

5N

5N

5N

5N

AN

AN

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound
Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

=

O0000g

(5

P(z|x)

éo

Under a Light:

Measurement z:

P(zlx):

» .
C .'
a..- .'
* G
" U
ol

(5

Next to a Light

Measurement z:

P(z|x):

éo

Elsewhere

Measurement z:

P(zlx):

éo

Global Localization Using Vision

WA

Limitations

* The approach described so far is able to
 track the pose of a mobile robot and to
* globally localize the robot.

* Can we deal with localization errors (i.e., the kidnapped robot
problem)?

* How to handle localization errors/failures?
 Particularly serious when the number of particles is small

50

éo

Approaches

 Randomly insert samples
e Why?
* The robot can be teleported at any point in time

* How many particles to add? With what distribution?

» Add particles according to localization performance

* Monitor the probability of sensor measurements p(z¢|z1.4—1, U1.¢, M)

e 1
* For particle filters: p(z¢|z1.¢—1, Uq.py M) = HZ Wt[m]

* Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).

Random Samples
Vision-Based Localization ¥
936 Images, 4MB, .6secs/image

Trajectory of the robot:

Kidnapping the Robot

éo

Summary

e Particle filters are an implementation of recursive Bayesian filtering
* They represent the posterior by a set of weighted samples.

* |nthe context of localization, the particles are propagated
according to the motion model.

 They are then weighted according to the likelihood of the
observations.

* Inare-sampling step, new particles are drawn with a probability
proportional to the likelihood of the observation.

