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Announcements

* Exam1 Regrade & Resubmit due: 10/13
* Pitch Presentation: 10/24, 10/26
* MP3 Due: 10/27

* For GEM and F1-Tenth groups, finish 3 Safety Training Online &
upload safety training certificate to box ASAP

* More details on campuswire
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Review from last time: Beliefs

Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state x;

bel(x;) = p(x¢|z1.e, U1:t)
Posterior distribution over state at time t given all past measurements and control.

This will be calculated in two steps:
1. Prediction: bel(xy) = p(x¢|Z1.r—1, Uq.t)

2. Correction: Calculating bel(x;) from bel(x;) a.k.a measurement update
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Recursive Bayes Filter

Algorithm Bayes_filter(bel(x;_1), u;, z;)

for all x; do:
bel(x;) = fp(xt|ut,xt;1)bel(xt—1)dxt—1
bel(x;) = n p(z:|x;) bel(x;)

end for

return bel(x;)
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Histogram Filter or Discrete Bayes Filter
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Finitely many states x;, x;, etc. Random state vector X;
Pk ¢ belief at time t for state xj; discrete probability distribution
Algorithm Discrete_Bayes_filter({py ;_1}, us, 2¢):
for all k do:
Prt = iP(Xe = xplue Xe—1 = x)Dit—1
Pre = NP2 | Xy = X)) Pt
end for

return {pk’t}

bel(x;_1) m(xt—l)

@ p(xe|ug, 3)

p(Zt|xt),,



Piecewise Constant Representation of beliefs

can compute the new

Fixing an input u, we
belief
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Outline of filtering module

* Particle filter
* Nonparametric representation of distributions with samples
* Weighted particles
* Importance sampling

* Monte Carlo localization
* Examples
 Conclusions
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Monte Carlo Localization

Represents beliefs by particles
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Particle Filters

®* Represent belief by finite number of parameters (just like histogram filter)

® But, they differ in how the parameters (particles) are generated and populate

the state space

* Key idea: represent belief bel(x;) by a random set of state samples

®* Advantages

®* The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

® Can handle nonlinear tranformations

®* Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap

filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d
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Particle filtering algorithm

X = xl[l],xt[z], ...xEM] particles

Algorithm Particle_filter(X,;_1, u;, z¢):
Xe1=X=0

for allmin [M] do:

sample xl[m] ~p(xeluy, xt[r—nb

w™ = p (zt|x£m])

X, =X, + (2™, w™)
end for
for allmin [M] do:

draw i with probability « Wt[i]

add x4 to X,
end for

return X;

ideally, xim] is selected with probability prop. to
(Xt | Z1:4, Ug:t)

X;_q is the temporary particle set

// sampling from state transition dist.

// calculates importance factor w; or weight

// resampling or importance sampling; these are
distributed accordington p (Zt‘xt[m]) bel(x;)

// survival of fittest: moves/adds particles to parts of

the state space with higher probability



Importance Sampling

suppose we want to compute E¢[I(x € A)] but
we can only sample from density g

Er[I(x € A)]

= [ f(x)I(x € A)dx

= %g(x)](x € A)dx, provided g(x) > 0

= fw()g(x)I(x € A)dx
=E [w()I(x € A)]

We need f(x) > 0= g(x) >0

vvvvvvvvvvvvvvvvvvvvv

.......................

Weight samples: w =f/g
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Monte Carlo Localization (MCL)

X = xl[l],xt[z], ...xEM] particles

Algorithm MCL(X;_, u¢, z¢,m):
Xe1=X=0

for allmin [M] do:

x,{m] = sample_motion_model(u; xfﬂ)
Wt[m] = measurement_model(z,, me]'m)

X, =X, + (2™ w™)
end for
for allmin [M] do:

[2]

draw i with probability < w;

add x4 to X,
end for

return X;

Plug in motion and measurement models
in the particle filter



Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion




Sensor Information: Importance Sampling
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Robot Motion

'
(NN (N (N (NN N (NN NN NN 1] (NN NN N (N (N (N N NN (NN (N (NN NN N (NN N N (N (N (NN N (NN (NN N

)
1 1 | (I [[1 ] I I e [ Il | (N (1 0 o 1 W1 oy




(¢













(C













AN






5N




5N







5N




5N




5N




AN



AN



Sample-based Localization (sonar)




Initial Distribution




After Incorporating Ten Ultrasound
Scans




After Incorporating 65 Ultrasound Scans




Estimated Path




Using Ceiling Maps for Localization




Vision-based Localization
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P(z|x)
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Under a Light:

Measurement z:

P(zlx):
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Next to a Light

Measurement z:

P(z|x):




éo

Elsewhere

Measurement z:

P(zlx):
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Global Localization Using Vision
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Limitations

* The approach described so far is able to
 track the pose of a mobile robot and to
* globally localize the robot.

* Can we deal with localization errors (i.e., the kidnapped robot
problem)?

* How to handle localization errors/failures?
 Particularly serious when the number of particles is small

50
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Approaches

 Randomly insert samples
e Why?
* The robot can be teleported at any point in time

* How many particles to add? With what distribution?

» Add particles according to localization performance

* Monitor the probability of sensor measurements p(z¢|z1.4—1, U1.¢, M)

e 1
* For particle filters: p(z¢|z1.¢—1, Uq.py M) = HZ Wt[m]

* Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).



Random Samples
Vision-Based Localization ¥
936 Images, 4MB, .6secs/image

Trajectory of the robot:




Kidnapping the Robot
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Summary

e Particle filters are an implementation of recursive Bayesian filtering
* They represent the posterior by a set of weighted samples.

* |nthe context of localization, the particles are propagated
according to the motion model.

 They are then weighted according to the likelihood of the
observations.

* Inare-sampling step, new particles are drawn with a probability
proportional to the likelihood of the observation.



