
Principles of Safe Autonomy:
Lecture 12-13:

Filtering and Robot Localization
Sayan Mitra

2023

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book’s website

Announcements

• Exam1 Regrade & Resubmit due: 10/13
• Pitch Presentation: 10/24, 10/26
• MP3 Due: 10/27
• For GEM and F1-Tenth groups, finish 3 Safety Training Online &

upload safety training certificate to box ASAP
• More details on campuswire

Review from last time: Beliefs
Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state 𝑥!
𝑏𝑒𝑙(𝑥!) = 𝑝(𝑥!|𝑧":!, 𝑢":!)

Posterior distribution over state at time t given all past measurements and control.
This will be calculated in two steps:

1. Prediction: 𝑏𝑒𝑙(𝑥!) = 𝑝 𝑥! 𝑧":!$", 𝑢":!

2. Correction: Calculating 𝑏𝑒𝑙(𝑥!) from 𝑏𝑒𝑙(𝑥!) a.k.a measurement update

Recursive Bayes Filter

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥!"# , 𝑢! , 𝑧!)
for all 𝑥! do:

𝑏𝑒𝑙 𝑥! = ∫ 𝑝(𝑥!|𝑢!,𝑥!"#)𝑏𝑒𝑙(𝑥!"#)𝑑𝑥!"#
𝑏𝑒𝑙 𝑥! = 𝜂 𝑝 𝑧! 𝑥! 𝑏𝑒𝑙(𝑥!)

end for
return 𝑏𝑒𝑙(𝑥!)

𝑏𝑒𝑙 𝑥!"#

𝑥!
𝑝′

1
𝑝!

2
𝑝"

3
𝑝#

𝑝 𝑥!|𝑢! , 1

𝑝 𝑥!|𝑢! , 2

𝑝 𝑥!|𝑢! , 3

𝑏𝑒𝑙 𝑥!"#

𝑏𝑒𝑙(𝑥!)

𝑝 𝑧! 𝑥!

Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥1, 𝑥2, 𝑒𝑡𝑐. Random state vector 𝑋!
𝑝2,!: belief at time t for state 𝑥2; discrete probability distribution

Algorithm Discrete_Bayes_filter(𝑝2,!$" , 𝑢!, 𝑧!):
for all 𝑘 do:

�̅�2,! = ∑1 𝑝(𝑋! = 𝑥2|𝑢!,𝑋!$" = 𝑥1)𝑝1,!$"
𝑝2,! = 𝜂 𝑝 𝑧! 𝑋! = 𝑥2)�̅�2,!

end for
return {𝑝2,!}

𝑏𝑒𝑙 𝑥!"#

𝑥"
𝑝′

1
𝑝!,%&!

2
𝑝",%&!

3
𝑝#,%&!

𝑝 𝑥$|𝑢! , 1

𝑝 𝑥!|𝑢! , 2

𝑝 𝑥!|𝑢! , 3

𝑏𝑒𝑙 𝑥!"#

𝑏𝑒𝑙(𝑥!)

𝑝 𝑧! 𝑥!

6

Piecewise Constant Representation of beliefs

),,(>=< qyxxBel t
Fixing an input ut we
can compute the new
belief

Outline of filtering module

• Particle filter
• Nonparametric representation of distributions with samples
• Weighted particles
• Importance sampling

• Monte Carlo localization
• Examples
• Conclusions

8

Sonars & Occupancy Grid Map

Monte Carlo Localization

Represents beliefs by particles

• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate
the state space

• Key idea: represent belief 𝑏𝑒𝑙 𝑥! by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d

Particle Filters

Particle filtering algorithm

𝑋! = 𝑥!
[#], 𝑥!

[%], … 𝑥!
[&] particles

Algorithm Particle_filter(𝑋!'#, 𝑢! , 𝑧!):(𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

sample 𝑥!
[(]~𝑝 𝑥! 𝑢! , 𝑥!'#

[(])

𝑤!
[(] = 𝑝 𝑧! 𝑥!

(

(𝑋! = (𝑋! + ⟨ 𝑥!
(, 𝑤!

[(]⟩
end for
for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

ideally, 𝑥<
[>] is selected with probability prop. to

𝑝 𝑥< 𝑧@:<, 𝑢@:<)
*𝑋<B@ is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 𝑤< or weight

// resampling or importance sampling; these are
distributed according to 𝜂 𝑝 𝑧< 𝑥<

[>] 𝑏𝑒𝑙 𝑥<
// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Weight samples: w = f / g

Importance Sampling

suppose we want to compute 𝐸) 𝐼 𝑥 ∈ 𝐴 but
we can only sample from density 𝑔

𝐸) 𝐼 𝑥 ∈ 𝐴

= ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥
= ∫) *

+ *
𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥
= 𝐸+ 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0

Monte Carlo Localization (MCL)
𝑋! = 𝑥!

[#], 𝑥!
[%], … 𝑥!

[&] particles

Algorithm MCL(𝑋!'#, 𝑢! , 𝑧!,m):
(𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

𝑥!
[(] = 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢! 𝑥!'#

[(])

𝑤!
[(] = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧! , 𝑥!

(,()
(𝑋! = (𝑋! + ⟨ 𝑥!

(, 𝑤!
[(]⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

Plug in motion and measurement models
in the particle filter

Particle Filters

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzpw

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

ò¬- 'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzpw

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

Robot Motion

ò¬- 'd)'()'|()(, xxBelxuxpxBel

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Sample-based Localization (sonar)

40

Initial Distribution

41

After Incorporating Ten Ultrasound
Scans

42

After Incorporating 65 Ultrasound Scans

43

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

P(z|x)

h(x)
z

Under a Light:
Measurement z: P(z|x):

Next to a Light
Measurement z: P(z|x):

Elsewhere
Measurement z: P(z|x):

Global Localization Using Vision

50

Limitations

• The approach described so far is able to
• track the pose of a mobile robot and to
• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot
problem)?
• How to handle localization errors/failures?
• Particularly serious when the number of particles is small

51

Approaches
• Randomly insert samples

• Why?
• The robot can be teleported at any point in time

• How many particles to add? With what distribution?
• Add particles according to localization performance
• Monitor the probability of sensor measurements 𝑝(𝑧,|𝑧-:,/-, 𝑢-:, , 𝑚)

• For particle filters: 𝑝(𝑧,|𝑧-:,/-, 𝑢-:, , 𝑚) ≈
-
0
∑𝑤,

[2]

• Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).

52

Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:

53

Kidnapping the Robot

59

Summary
• Particle filters are an implementation of recursive Bayesian filtering
• They represent the posterior by a set of weighted samples.
• In the context of localization, the particles are propagated

according to the motion model.
• They are then weighted according to the likelihood of the

observations.
• In a re-sampling step, new particles are drawn with a probability

proportional to the likelihood of the observation.

