
Fall 23 Principles of Safe Autonomy:
Lecture 10-12:

State Estimation, Filtering and Localization
Sayan Mitra

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book’s website

Announcements
Project sign-up https://forms.gle/vLas1iPogg7hr8uG6

• 2-4 people / group, could be different than MP groups

• By Sunday midnight (10/8)

• Only one from each group needs to submit form

Midterm 1: Average: 66, Standard Deviation: 14, Max: 88

Optional: Due 11:59pm CT next Friday(10/13) in gradescope
• You can re-solve up to 12 points worth of MT1 problems and make it count towards

your score

• You can request regrade for your current solutions for gross grading errors

• For each sub-problem (E.g. 1b), you can at most do one of the above

https://forms.gle/vLas1iPogg7hr8uG6

Autonomy
pipeline

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

GEM platform

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

Outline of state estimation module

• Introduction: Localization problem, taxonomy
• Probabilistic models
• Discrete Bayes Filter
• Review of Bayes rule and conditional probability

• Histogram filter
• Grid localization

• Particle filter
• Monte Carlo localization

Roomba mapping

iRobot Roomba uses VSLAM algorithm to create maps for cleaning areas

State estimation and localization problem (MP3)
• For closed loop control, the controller needs to know the

current state (position, attitude, pose)
• x(t+1) = f(x(t), u(t)); u(t) = g(x(t))

• But, typically x(t) is not available directly. We have some other
observables z(t) = h(x(t)) that are available. We have to get an
estimate !𝑥(𝑡) from observations of z(t)

• Examples of x(t) and z(t)

• Localization = Special case of state estimation. Determine the
pose of the robot relative to the given map of the environment

• How does a robot know its position in ECEB (no GPS indoors)?

Setup: State evolution and measurement models

Familiar Deterministic model:
System evolution: 𝑥!"# = 𝑓 𝑥! , 𝑢!
• 𝑥!: unknown state of the system at time t
• 𝑢!: known control input at time t
• 𝑓: known dynamic function, possibly stochastic

Measurement: 𝑧! = 𝑔(𝑥! , 𝑚)
• 𝑧!: known measurement of state 𝑥! at time 𝑡
• 𝑚: unknown underlying map
• 𝑔: known measurement function

We will work with probabilistic models going
forward 𝑚

This is not exactly the measurement model of MP3

𝑥!

𝑧![1]

𝑧![2]

𝑧![3]

Localization as coordinate transformation

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1
Shaded known:
map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in
global coordinates. Localization
= establish coord transf.
between m and robot’s local
coordinates

Transformation used for objects
of interest (obstacles,
pedestrians) for decision,
planning and control

Localization taxonomy
Global vs Local

• Local: assumes initial pose is known, has to only account for the uncertainty
coming from robot motion (position tracking problem)

• Global: initial pose unknown; harder and subsumes position tracking

• Kidnapped robot problem: during operation the robot can get teleported to a
new unknown location (models failures)

Static vs Dynamic Environments

Single vs Multi-robot localization

Passive vs Active Approaches

• Passive: localization module only observes and is controlled by other means;
motion not designed to help localization (Filtering problem)

• Active: controls robot to improve localization

Ambiguity in global localization arising from
locally symmetric environment

Discrete Bayes Filter Algorithm

• System evolution: 𝑥&'(= 𝑓 𝑥& , 𝑢&
• 𝑥(: state of the system at time t
• 𝑢(: control input at time t

• Measurement: 𝑧& = 𝑔(𝑥& , 𝑚)
• 𝑧(:measurement of state 𝑥(at time 𝑡
• 𝑚: unknown underlying map

Setup, notations

• Discrete time model
• 𝑥&!:&" = 𝑥&! , 𝑥&!'(, 𝑥&!'*, … , 𝑥&" sequence of robot states 𝑡(to 𝑡*
• Robot takes one measurement at a time
• 𝑧(!:(" = 𝑧(! , … , 𝑧(" sequence of all measurements from 𝑡*to 𝑡+

• Control also exercised at discrete steps
• 𝑢(!:(" = 𝑢(! , 𝑢(!,*, 𝑢(!,+, … , 𝑢(" sequence control inputs

Review of conditional probabilities

Random variable 𝑋 takes values 𝑥*, 𝑥+, . .
Example: Result of a dice roll (𝑋) and 𝑥- = 1,… , 6
𝑃 𝑋 = 𝑥 is written as 𝑃 𝑥

Conditional probability: 𝑃 𝑥 𝑦 = 𝑃 𝑋 = 𝑥 𝑌 = 𝑦) = . /,1
.(1)

provided 𝑃 𝑦 > 0

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃(𝑦)

= 𝑃 𝑦 𝑥 𝑃(𝑥)
Substituting in the definition of Conditional Prob. we get Bayes Rule

𝑃 𝑥 𝑦 = . 𝑦 𝑥 . /
.(1) , provided 𝑃 𝑦 > 0

Using measurements to update state estimates

𝑃 𝑥 𝑦 = + 𝑦 𝑥 + ,
+(-)

, provided 𝑃 𝑦 > 0---- Equation	(*)

𝑋 : Robot position, 𝑌 : measurement,

𝑃 𝑥 : Prior distribution (before measurement)

𝑃 𝑥 𝑦 : Posterior distribution (after measurement)

𝑃 𝑦 𝑥 :	Measurement model / inverse conditional / generative model

𝑃(𝑦): does not depend on x; normalization constant

State evolution and measurement:
probabilistic models
Evolution of state and measurements governed by probabilistic laws
𝑝 𝑥& 𝑥.:&/(, 𝑧(:&/(, 𝑢(:&) describes motion/state evolution model
• If state is complete, sufficient summary of the history then
• 𝑝 𝑥(𝑥4:(5*, 𝑧4:(5*, 𝑢4:(5*) = 𝑝 𝑥(𝑥(5*, 𝑢() state transition prob.
• 𝑝 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

zt-1 zt
zt+
1

ut-1 ut
ut+
1

xt-1 xt
xt+
1

𝑥!"# = 𝑓 𝑥! , 𝑢!

Measurement model

Measurement process 𝑝 𝑧& 𝑥.:& , 𝑧(:&/(, 𝑢.:&/()
• Again, if state is complete
• 𝑝 𝑧(𝑥4:(, 𝑧*:(5*, 𝑢*:() = 𝑝 𝑧(𝑥()
• 𝑝 𝑧(𝑥(): measurement probability
• 𝑝 𝑧 𝑥): time invariant measurement probability

zt-1 zt
zt+
1

ut-1 ut
ut+
1

xt-1 xt
xt+
1

𝑧! = 𝑔 𝑥!

Beliefs
Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state 𝑥(
𝑏𝑒𝑙(𝑥() = 𝑝(𝑥(|𝑧*:(, 𝑢*:()

Posterior distribution over state at time t given all past measurements and control.
This will be calculated in two steps:

1. Prediction: 𝑏𝑒𝑙(𝑥() = 𝑝 𝑥(𝑧*:(5*, 𝑢*:(

2. Correction: Calculating 𝑏𝑒𝑙(𝑥() from 𝑏𝑒𝑙(𝑥() a.k.a measurement update (will
use Equation (*) from earlier)

Recursive Bayes Filter

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥&/(, 𝑢& , 𝑧&)
for all 𝑥& do:

𝑏𝑒𝑙 𝑥& = ∫ 𝑝(𝑥&|𝑢&,𝑥&/()𝑏𝑒𝑙(𝑥&/()𝑑𝑥&/(
𝑏𝑒𝑙 𝑥& = 𝜂 𝑝 𝑧& 𝑥& 𝑏𝑒𝑙(𝑥&)

end for
return 𝑏𝑒𝑙(𝑥&)

𝑏𝑒𝑙 𝑥!$#

𝑥!
𝑝′

1
𝑝!

2
𝑝"

3
𝑝#

𝑝 𝑥!|𝑢! , 1

𝑝 𝑥!|𝑢! , 2

𝑝 𝑥!|𝑢! , 3

𝑏𝑒𝑙 𝑥!$#

𝑏𝑒𝑙(𝑥!)

𝑝 𝑧! 𝑥!

Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥-, 𝑥?, 𝑒𝑡𝑐. Random state vector 𝑋(
𝑝?,(: belief at time t for state 𝑥?; discrete probability distribution

Algorithm Discrete_Bayes_filter(𝑝?,(5* , 𝑢(, 𝑧():
for all 𝑘 do:

𝑝̅?,(= ∑- 𝑝(𝑋(= 𝑥?|𝑢(,𝑋(5* = 𝑥-)𝑝-,(5*
𝑝?,(= 𝜂 𝑝 𝑧(𝑋(= 𝑥?)𝑝̅?,(

end for
return {𝑝?,(}

𝑏𝑒𝑙 𝑥!$#

𝑥"
𝑝′

1
𝑝!,%&!

2
𝑝",%&!

3
𝑝#,%&!

𝑝 𝑥%|𝑢! , 1

𝑝 𝑥!|𝑢! , 2

𝑝 𝑥!|𝑢! , 3

𝑏𝑒𝑙 𝑥!$#

𝑏𝑒𝑙(𝑥!)

𝑝 𝑧! 𝑥!

Grid Localization

• Solves global localization in some cases kidnapped robot problem
• Can process raw sensor data
• No need for feature extraction

• Non-parametric
• In particular, not bound to unimodal distributions (unlike Extended Kalman

Filter)

Grid localization

Algorithm Grid_localization (𝑝!,#$% , 𝑢#, 𝑧#, 𝑚)
for all 𝑘 do:

𝑝̅!,# = ∑& 𝑝&,#$%𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑚𝑒𝑎𝑛 𝑥! , 𝑢#, 𝑚𝑒𝑎𝑛 𝑥&)
𝑝!,# = 𝜂 𝑝̅!,#𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧#, 𝑚𝑒𝑎𝑛 𝑥! , 𝑚)

end for
return 𝑏𝑒𝑙(𝑥#)

23

Piecewise Constant Representation

),,(>=< qyxxBel t
Fixing an input ut we
can compute the new
belief

Start

Motion Model without measurements

𝑚𝑒𝑎𝑛 𝑥%

Proximity Sensor Model

Laser sensor Sonar sensor

𝑥%

𝑝 𝑧! 𝑋! = 𝑥%)

𝑚

26

Grid localization,
𝑏𝑒𝑙 𝑥& represented by a
histogram over grid 𝑝(𝑧|𝑥)

𝑝(𝑧|𝑥)

Summary

• Key variable: Grid resolution

• Two approaches
• Topological: break-up pose space into regions of significance (landmarks)
• Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs

• Important to compensate for coarseness of resolution
• Evaluating measurement/motion based on the center of the region may not be enough. If motion is updated

every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naïve implementation will not have any
state transition!

• Computation
• Motion model update for a 3D grid required a 6D operation, measurement update 3D
• With fine-grained models, the algorithm cannot be run in real-time
• Some calculations can be cached (ray-casting results)

28

Grid-based Localization

32

Sonars and
Occupancy Grid Map

Monte Carlo Localization

• Represents beliefs by particles

• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate
the state space

• Key idea: represent belief 𝑏𝑒𝑙 𝑥(by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d

Particle Filters

Particle filtering algorithm
𝑋! = 𝑥!

[#], 𝑥!
[%], … 𝑥!

[&] particles

Algorithm Particle_filter(𝑋!'#, 𝑢! , 𝑧!):-𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

sample 𝑥!
[(]~𝑝 𝑥! 𝑢! , 𝑥!'#

[(])

𝑤!
[(] = 𝑝 𝑧! 𝑥!

(

-𝑋! = -𝑋! + ⟨ 𝑥!
(, 𝑤!

[(]⟩
end for
for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

ideally, 𝑥#
[B] is selected with probability prop. to

𝑝 𝑥# 𝑧%:#, 𝑢%:#)
L𝑋#$% is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 𝑤# or weight

// resampling or importance sampling; these are
distributed according to 𝜂 𝑝 𝑧# 𝑥#

[B] 𝑏𝑒𝑙 𝑥#
// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Weight samples: w = f / g

Importance Sampling

suppose we want to compute 𝐸, 𝐼 𝑥 ∈ 𝐴 but
we can only sample from density 𝑔

𝐸, 𝐼 𝑥 ∈ 𝐴

= ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫ , -
. -

𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥
= 𝐸. 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0

Monte Carlo Localization (MCL)
𝑋! = 𝑥!

[#], 𝑥!
[%], … 𝑥!

[&] particles

Algorithm MCL(𝑋!'#, 𝑢! , 𝑧!,m):
-𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

𝑥!
[(] = 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢! 𝑥!'#

[(])

𝑤!
[(] = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧! , 𝑥!

(,()
-𝑋! = -𝑋! + ⟨ 𝑥!

(, 𝑤!
[(]⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

Plug in motion and measurement models
in the particle filter

Particle Filters

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzpw

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

The picture can't be displayed.
ò¬- 'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzpw

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

Robot Motion

ò¬- 'd)'()'|()(, xxBelxuxpxBel

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Sample-based Localization (sonar)

64

Initial Distribution

65

After Incorporating Ten Ultrasound
Scans

66

After Incorporating 65 Ultrasound Scans

67

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

P(z|x)

h(x)
z

Under a Light
Measurement z: P(z|x):

Next to a Light
Measurement z: P(z|x):

Elsewhere
Measurement z: P(z|x):

Global Localization Using Vision

74

Limitations

• The approach described so far is able to
• track the pose of a mobile robot and to
• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot
problem)?
• How to handle localization errors/failures?
• Particularly serious when the number of particles is small

75

Approaches
• Randomly insert samples

• Why?
• The robot can be teleported at any point in time

• How many particles to add? With what distribution?
• Add particles according to localization performance
• Monitor the probability of sensor measurements 𝑝(𝑧!|𝑧#:!0#, 𝑢#:! , 𝑚)

• For particle filters: 𝑝(𝑧!|𝑧#:!0#, 𝑢#:! , 𝑚) ≈
#
1
∑𝑤!

[3]

• Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).

76

Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:

77

Kidnapping the Robot

83

Summary
• Particle filters are an implementation of recursive

Bayesian filtering
• They represent the posterior by a set of weighted

samples.
• In the context of localization, the particles are

propagated according to the motion model.
• They are then weighted according to the likelihood of

the observations.
• In a re-sampling step, new particles are drawn with a

probability proportional to the likelihood of the
observation.

