Fall 23 Principles of Safe Autonomy: Lecture 10-12:
 State Estimation, Filtering and Localization

Sayan Mitra

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book's website

Announcements

Project sign-up https://forms.gle/vLas1iPogg7hr8uG6

- 2-4 people / group, could be different than MP groups
- By Sunday midnight (10/8)
- Only one from each group needs to submit form

Midterm 1: Average: 66, Standard Deviation: 14, Max: 88
Optional: Due 11:59pm CT next Friday(10/13) in gradescope

- You can re-solve up to 12 points worth of MT1 problems and make it count towards your score
- You can request regrade for your current solutions for gross grading errors
- For each sub-problem (E.g. 1b), you can at most do one of the above

GEM platform

Autonomy pipeline

Sensing
Physics-based
models of camera,
LIDAR, RADAR, GPS,
etc.

Perception
Programs for object detection, lane tracking, scene understanding, etc.

Decisions and planning

Programs and multiagent models of pedestrians, cars,

Control

Dynamical models of engine, powertrain, steering, tires, etc.

Perception
Programs for object
detection, lane
tracking, scene
understanding, etc.

Outline of state estimation module

- Introduction: Localization problem, taxonomy
- Probabilistic models
- Discrete Bayes Filter
- Review of Bayes rule and conditional probability
- Histogram filter
- Grid localization
- Particle filter
- Monte Carlo localization

Roomba mapping

iRobot Roomba uses VSLAM algorithm to create maps for cleaning areas

State estimation and localization problem (MP3)

- For closed loop control, the controller needs to know the current state (position, attitude, pose)
- $\mathrm{x}(\mathrm{t}+1)=\mathrm{f}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}))$;
$u(t)=g(x(t))$
- But, typically $x(t)$ is not available directly. We have some other observables $z(t)=h(x(t))$ that are available. We have to get an estimate $\hat{x}(t)$ from observations of $z(t)$
- Examples of $x(t)$ and $z(t)$

- Localization = Special case of state estimation. Determine the pose of the robot relative to the given map of the environment
- How does a robot know its position in ECEB (no GPS indoors)?

Setup: State evolution and measurement models

Familiar Deterministic model:
System evolution: $x_{t+1}=f\left(x_{t}, u_{t}\right)$

- x_{t} : unknown state of the system at time t
- u_{t} : known control input at time t
- f : known dynamic function, possibly stochastic

Measurement: $z_{t}=g\left(x_{t}, m\right)$

- z_{t} : known measurement of state x_{t} at time t
- m: unknown underlying map
- g : known measurement function

We will work with probabilistic models going forward

Localization as coordinate transformation

Shaded known:
map (m), control inputs (u), measurements(z). White nodes to be determined (x)
maps (m) are described in global coordinates. Localization = establish coord transf. between m and robot's local coordinates

Transformation used for objects of interest (obstacles, pedestrians) for decision, planning and control

Localization taxonomy

Global vs Local

- Local: assumes initial pose is known, has to only account for the uncertainty coming from robot motion (position tracking problem)
- Global: initial pose unknown; harder and subsumes position tracking
- Kidnapped robot problem: during operation the robot can get teleported to a new unknown location (models failures)

Static vs Dynamic Environments
Single vs Multi-robot localization
Passive vs Active Approaches

- Passive: localization module only observes and is controlled by other means; motion not designed to help localization (Filtering problem)
- Active: controls robot to improve localization

Ambiguity in global localization arising from locally symmetric environment

Discrete Bayes Filter Algorithm

- System evolution: $x_{t+1}=f\left(x_{t}, u_{t}\right)$
- x_{t} : state of the system at time t
- u_{t} : control input at time t
- Measurement: $z_{t}=g\left(x_{t}, m\right)$
- z_{t} : measurement of state x_{t} at time t
- m : unknown underlying map

Setup, notations

- Discrete time model
- $x_{t_{1}: t_{2}}=x_{t_{1}}, x_{t_{1}+1}, x_{t_{1}+2}, \ldots, x_{t_{2}}$ sequence of robot states t_{1} to t_{2}
- Robot takes one measurement at a time
- $z_{t_{1}: t_{2}}=z_{t_{1}}, \ldots, z_{t_{2}}$ sequence of all measurements from t_{1} to t_{2}
- Control also exercised at discrete steps
- $u_{t_{1}: t_{2}}=u_{t_{1}}, u_{t_{1}+1}, u_{t_{1}+2}, \ldots, u_{t_{2}}$ sequence control inputs

Review of conditional probabilities

Random variable X takes values $x_{1}, x_{2}, .$.
Example: Result of a dice roll (X) and $x_{i}=1, \ldots, 6$
$P(X=x)$ is written as $P(x)$
Conditional probability: $P(x \mid y)=P(X=x \mid Y=y)=\frac{P(x, y)}{P(y)}$ provided $P(y)>0$

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y) \\
& =P(y \mid x) P(x)
\end{aligned}
$$

Substituting in the definition of Conditional Prob. we get Bayes Rule
$P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}$, provided $P(y)>0$

Using measurements to update state estimates

$P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}$, provided $P(y)>0---$ Equation $\left({ }^{*}\right)$
X : Robot position, Y : measurement,
$P(x)$: Prior distribution (before measurement)
$P(x \mid y)$: Posterior distribution (after measurement)
$P(y \mid x)$: Measurement model / inverse conditional / generative model
$P(y)$: does not depend on x; normalization constant

State evolution and measurement: probabilistic models

Evolution of state and measurements governed by probabilistic laws $p\left(x_{t} \mid x_{0: t-1}, z_{1: t-1}, u_{1: t}\right)$ describes motion/state evolution model

- If state is complete, sufficient summary of the history then
- $p\left(x_{t} \mid x_{0: t-1}, z_{0: t-1}, u_{0: t-1}\right)=p\left(x_{t} \mid x_{t-1}, u_{t}\right)$ state transition prob.
- $p\left(x^{\prime} \mid x, u\right)$ if transition probabilities are time invariant

Measurement model

Measurement process $p\left(z_{t} \mid x_{0: t}, z_{1: t-1}, u_{0: t-1}\right)$

- Again, if state is complete
- $p\left(z_{t} \mid x_{0: t}, z_{1: t-1}, u_{1: t}\right)=p\left(z_{t} \mid x_{t}\right)$
- $p\left(z_{t} \mid x_{t}\right)$: measurement probability
- $p(z \mid x)$: time invariant measurement probability

Beliefs

Belief: Robot's knowledge about the state of the environment
True state is unknowable / measurable typically, so, robot must infer state from data and we have to distinguish this inferred/estimated state from the actual state x_{t} $\operatorname{bel}\left(x_{t}\right)=p\left(x_{t} \mid z_{1: t}, u_{1: t}\right)$

Posterior distribution over state at time t given all past measurements and control.
This will be calculated in two steps:

1. Prediction: $\overline{\operatorname{bel}}\left(x_{t}\right)=p\left(x_{t} \mid z_{1: t-1}, u_{1: t}\right)$
2. Correction: Calculating $\operatorname{bel}\left(x_{t}\right)$ from $\overline{\operatorname{bel}}\left(x_{t}\right)$ a.k.a measurement update (will use Equation (*) from earlier)

Recursive Bayes Filter

Algorithm Bayes_filter $\left(\operatorname{bel}\left(x_{t-1}\right), u_{t}, z_{t}\right)$ for all x_{t} do:

$$
\begin{aligned}
& \overline{\operatorname{bel}}\left(x_{t}\right)=\int p\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{bel}\left(x_{t-1}\right) d x_{t-1} \\
& \operatorname{bel}\left(x_{t}\right)=\eta p\left(z_{t} \mid x_{t}\right) \overline{\operatorname{bel}}\left(x_{t}\right)
\end{aligned}
$$

end for
return $\operatorname{bel}\left(x_{t}\right)$
$\operatorname{bel}\left(x_{t-1}\right) \quad \overline{\operatorname{bel}}\left(x_{t-1}\right)$
($\begin{gathered}1 \\ p_{1}\end{gathered} p\left(x_{t} \mid u_{t}, 1\right)$

Histogram Filter or Discrete Bayes Filter

Finitely many states x_{i}, x_{k}, etc. Random state vector X_{t} $p_{k, t}$: belief at time t for state x_{k}; discrete probability distribution Algorithm Discrete_Bayes_filter $\left(\left\{p_{k, t-1}\right\}, u_{t}, z_{t}\right)$: for all k do:

$$
\begin{aligned}
& \bar{p}_{k, t}=\sum_{i} p\left(X_{t}=x_{k} \mid u_{t,} X_{t-1}=x_{i}\right) p_{i, t-1} \\
& p_{k, t}=\eta p\left(z_{t} \mid X_{t}=x_{k}\right) \bar{p}_{k, t}
\end{aligned}
$$

end for return $\left\{p_{k, t}\right\}$
$\operatorname{bel}\left(x_{t-1}\right) \quad \overline{\operatorname{bel}}\left(x_{t-1}\right)$
 $p\left(z_{t} \mid x_{t}\right)$

Grid Localization

- Solves global localization in some cases kidnapped robot problem
- Can process raw sensor data
- No need for feature extraction
- Non-parametric
- In particular, not bound to unimodal distributions (unlike Extended Kalman Filter)

Grid localization

```
Algorithm Grid_localization \(\left(\left\{p_{k, t-1}\right\}, u_{t}, z_{t}, m\right)\)
for all \(k\) do:
    \(\bar{p}_{k, t}=\sum_{i} p_{i, t-1}\) motion_model \(\left(\right.\) mean \(\left(x_{k}\right), u_{t}\), mean \(\left.\left(x_{i}\right)\right)\)
    \(p_{k, t}=\eta \bar{p}_{k, t}\) measurement_model \(\left(z_{t}\right.\), mean \(\left.\left(x_{k}\right), m\right)\)
end for
return \(\operatorname{bel}\left(x_{t}\right)\)
```


Piecewise Constant Representation

Fixing an input u_{t} we can compute the new belief

Motion Model without measurements

Proximity Sensor Model

Laser sensor

Sonar sensor

Grid localization, $\operatorname{bel}\left(x_{t}\right)$ represented by a histogram over grid

$4 p(z \mid x)$

$4 p(z \mid x)$
 $4 \mathrm{Be}(\mathrm{s})$

Summary

- Key variable: Grid resolution
- Two approaches
- Topological: break-up pose space into regions of significance (landmarks)
- Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs
- Important to compensate for coarseness of resolution
- Evaluating measurement/motion based on the center of the region may not be enough. If motion is updated every 1 s , robot moves at $10 \mathrm{~cm} / \mathrm{s}$, and the grid resolution is 1 m , then naïve implementation will not have any state transition!
- Computation
- Motion model update for a 3D grid required a 6D operation, measurement update 3D
- With fine-grained models, the algorithm cannot be run in real-time
- Some calculations can be cached (ray-casting results)

Grid-based Localization

Sonars and Occupancy Grid Map

约

Monte Carlo Localization

- Represents beliefs by particles

Particle Filters

- Represent belief by finite number of parameters (just like histogram filter)
- But, they differ in how the parameters (particles) are generated and populate the state space
- Key idea: represent belief $\operatorname{bel}\left(x_{t}\right)$ by a random set of state samples
- Advantages
- The representation is approximate and nonparametric and therefore can represent a broader set of distributions than e.g., Gaussian
- Can handle nonlinear tranformations
- Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle filtering algorithm

$X_{t}=x_{t}^{[1]}, x_{t}^{[2]}, \ldots x_{t}^{[M]}$ particles

Algorithm Particle_filter $\left(X_{t-1}, u_{t}, z_{t}\right)$:
$\bar{X}_{t-1}=X_{t}=\varnothing$
for all m in [M] do:

$$
\begin{aligned}
& \text { sample } x_{t}^{[m]} \sim p\left(x_{t} \mid u_{t}, x_{t-1}^{[m]}\right) \\
& w_{t}^{[m]}=p\left(z_{t} \mid x_{t}^{[m]}\right) \\
& \bar{X}_{t}=\bar{X}_{t}+\left\langle x_{t}^{[m]}, w_{t}^{[m]}\right\rangle
\end{aligned}
$$

end for
for all m in $[\mathrm{M}]$ do:
draw i with probability $\propto w_{t}^{[i]}$ add $x_{t}^{[i]}$ to X_{t}
end for
return X_{t}
ideally, $x_{t}^{[m]}$ is selected with probability prop. to $p\left(x_{t} \mid z_{1: t}, u_{1: t}\right)$
\bar{X}_{t-1} is the temporary particle set
// sampling from state transition dist.
// calculates importance factor w_{t} or weight
// resampling or importance sampling; these are distributed according to $\eta p\left(z_{t} \mid x_{t}^{[m]}\right) \overline{\operatorname{bel}}\left(x_{t}\right)$ // survival of fittest: moves/adds particles to parts of the state space with higher probability

Importance Sampling

suppose we want to compute $E_{f}[I(x \in A)]$ but we can only sample from density g

$$
\begin{aligned}
& E_{f}[I(x \in A)] \\
& =\int f(x) I(x \in A) d x \\
& =\int \frac{f(x)}{g(x)} g(x) I(x \in A) d x, \text { provided } g(x)>0 \\
& =\int w(x) g(x) I(x \in A) d x \\
& =E_{g}[w(x) I(x \in A)]
\end{aligned}
$$

We need $f(x)>0 \Rightarrow g(x)>0$
Weight samples: $w=f / g$

Monte Carlo Localization (MCL)

$X_{t}=x_{t}^{[1]}, x_{t}^{[2]}, \ldots x_{t}^{[M]}$ particles

Algorithm $\mathrm{MCL}\left(X_{t-1}, u_{t}, z_{t}, \mathrm{~m}\right)$:
$\bar{X}_{t-1}=X_{t}=\emptyset$
for all m in [M] do:
$x_{t}^{[m]}=$ sample_motion_model $\left(u_{t} x_{t-1}^{[m]}\right)$
$w_{t}^{[m]}=$ measurement_model $\left(z_{t}, x_{t}^{[m], m}\right)$
$\bar{X}_{t}=\bar{X}_{t}+\left\langle x_{t}^{[m]}, w_{t}^{[m]}\right\rangle$
end for
for all m in [M] do:
draw i with probability $\propto w_{t}^{[i]}$
add $x_{t}^{[i]}$ to X_{t}
end for
return X_{t}

Plug in motion and measurement models in the particle filter

Particle Filters

Sensor Information: Importance Sampling

$$
\begin{aligned}
& \operatorname{Bel}(x) \leftarrow \alpha p(z \mid x) \operatorname{Bel}^{-}(x) \\
& w
\end{aligned} \leftarrow \frac{\alpha p(z \mid x) \operatorname{Bel}^{-}(x)}{\operatorname{Bel}^{-}(x)}=\alpha p(z \mid x), ~ l
$$

$$
p(s)
$$

$$
4(0 \mid s)
$$

Robot Motion

Sensor Information: Importance Sampling

$$
\begin{aligned}
& \operatorname{Bel}(x) \leftarrow \alpha p(z \mid x) \operatorname{Bel}^{-}(x) \\
& w
\end{aligned} \leftarrow \frac{\alpha p(z \mid x) \operatorname{Bel}^{-}(x)}{\operatorname{Bel}^{-}(x)}=\alpha p(z \mid x), ~ l
$$

$$
p(s)
$$

$4 \mathrm{P}(\mathrm{O} \mid \mathrm{s})$

Robot Motion

$\operatorname{Bel}^{-}(x) \leftarrow \int p\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) \mathrm{d} x^{\prime}$

$p(s)$

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound

 Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

Under a Light

Measurement z:
$P(z \mid x):$

Next to a Light

Measurement z:
$P(z \mid x):$

Elsewhere

Measurement z:

$P(z \mid x):$

Global Localization Using Vision

Limitations

- The approach described so far is able to
- track the pose of a mobile robot and to
- globally localize the robot.
- Can we deal with localization errors (i.e., the kidnapped robot problem)?
- How to handle localization errors/failures?
- Particularly serious when the number of particles is small

Approaches

- Randomly insert samples
- Why?
- The robot can be teleported at any point in time
- How many particles to add? With what distribution?
- Add particles according to localization performance
- Monitor the probability of sensor measurements $p\left(z_{t} \mid z_{1: t-1}, u_{1: t}, m\right)$
- For particle filters: $p\left(z_{t} \mid z_{1: t-1}, u_{1: t}, m\right) \approx \frac{1}{M} \sum w_{t}^{[m]}$
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:

Kidnapping the Robot

Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.

