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Announcements
Project sign-up https://forms.gle/vLas1iPogg7hr8uG6

• 2-4 people / group, could be different than MP groups

• By Sunday midnight (10/8)

• Only one from each group needs to submit form

Midterm 1: Average: 66, Standard Deviation: 14, Max:  88

Optional: Due 11:59pm CT next Friday(10/13) in gradescope
• You can re-solve up to 12 points worth of MT1 problems and make it count towards 

your score

• You can request regrade for your current solutions for gross grading errors

• For each sub-problem (E.g. 1b), you can at most do one of the above

https://forms.gle/vLas1iPogg7hr8uG6


Autonomy 
pipeline

Control

Dynamical models of 
engine, powertrain, 
steering, tires, etc.

Decisions and 
planning

Programs and multi-
agent models of 

pedestrians, cars, 
etc. 

Perception

Programs for object 
detection, lane 
tracking, scene 

understanding, etc.

Sensing

Physics-based 
models of camera, 

LIDAR, RADAR, GPS, 
etc.

GEM platform
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Outline of state estimation module

• Introduction: Localization problem, taxonomy
• Probabilistic models
• Discrete Bayes Filter
• Review of Bayes rule and conditional probability

• Histogram filter
• Grid localization

• Particle filter
• Monte Carlo localization



Roomba mapping 

iRobot Roomba uses VSLAM algorithm to create maps for cleaning areas



State estimation and localization problem (MP3)
• For closed loop control, the controller needs to know the 

current state (position, attitude, pose)
• x(t+1) = f(x(t), u(t)); u(t) = g(x(t)) 

• But, typically x(t) is not available directly. We have some other 
observables z(t) = h(x(t)) that are available. We have to get an 
estimate !𝑥(𝑡) from observations of z(t)

• Examples of x(t) and z(t) 

• Localization = Special case of state estimation. Determine the 
pose of the robot relative to the given map of the environment

• How does a robot know its position in ECEB (no GPS indoors)?



Setup: State evolution and measurement models

Familiar Deterministic model:
System evolution: 𝑥!"# = 𝑓 𝑥! , 𝑢!
• 𝑥!: unknown state of the system at time t
• 𝑢!: known control input at time t
• 𝑓: known dynamic function, possibly stochastic

Measurement: 𝑧! = 𝑔(𝑥! , 𝑚)
• 𝑧!: known measurement of state 𝑥! at time 𝑡
• 𝑚: unknown underlying map
• 𝑔: known measurement function

We will work with probabilistic models going 
forward 𝑚

This is not exactly the measurement model of MP3 

𝑥!

𝑧![1]

𝑧![2]

𝑧![3]



Localization as coordinate transformation

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1
Shaded known: 
map (m), control inputs (u), 
measurements(z). White nodes 
to be determined (x)

maps (m) are described in 
global coordinates. Localization 
= establish coord transf. 
between m and robot’s local 
coordinates

Transformation used for objects 
of interest (obstacles, 
pedestrians) for decision, 
planning and control 



Localization taxonomy
Global vs Local

• Local: assumes initial pose is known, has to only account for the uncertainty 
coming from robot motion (position tracking problem)

• Global: initial pose unknown; harder and subsumes position tracking

• Kidnapped robot problem: during operation the robot can get teleported to a 
new unknown location (models failures)

Static vs Dynamic Environments

Single vs Multi-robot localization

Passive vs Active Approaches

• Passive: localization module only observes and is controlled by other means; 
motion not designed to help localization (Filtering problem)

• Active: controls robot to improve localization



Ambiguity in global localization arising from 
locally symmetric environment



Discrete Bayes Filter Algorithm

• System evolution: 𝑥&'( = 𝑓 𝑥& , 𝑢&
• 𝑥(: state of the system at time t
• 𝑢(: control input at time t

• Measurement: 𝑧& = 𝑔(𝑥& , 𝑚)
• 𝑧(:measurement of state 𝑥( at time 𝑡
• 𝑚: unknown underlying map



Setup, notations

• Discrete time model
• 𝑥&!:&" = 𝑥&! , 𝑥&!'(, 𝑥&!'*, … , 𝑥&" sequence of robot states 𝑡(to 𝑡*
• Robot takes one measurement at a time
• 𝑧(!:(" = 𝑧(! , … , 𝑧(" sequence of all measurements from 𝑡*to 𝑡+

• Control also exercised at discrete steps
• 𝑢(!:(" = 𝑢(! , 𝑢(!,*, 𝑢(!,+, … , 𝑢(" sequence control inputs



Review of conditional probabilities

Random variable 𝑋 takes values 𝑥*, 𝑥+, . .
Example: Result of a dice roll (𝑋) and 𝑥- = 1,… , 6
𝑃 𝑋 = 𝑥 is written as 𝑃 𝑥

Conditional probability: 𝑃 𝑥 𝑦 = 𝑃 𝑋 = 𝑥 𝑌 = 𝑦) = . /,1
.(1)

provided 𝑃 𝑦 > 0

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃(𝑦)

= 𝑃 𝑦 𝑥 𝑃(𝑥)
Substituting in the definition of Conditional Prob. we get Bayes Rule

𝑃 𝑥 𝑦 = . 𝑦 𝑥 . /
.(1) , provided 𝑃 𝑦 > 0



Using measurements to update state estimates

𝑃 𝑥 𝑦 = + 𝑦 𝑥 + ,
+(-)

, provided 𝑃 𝑦 > 0---- Equation	(*)

𝑋 : Robot position, 𝑌 : measurement, 

𝑃 𝑥 : Prior distribution (before measurement)

𝑃 𝑥 𝑦 : Posterior distribution (after measurement)

𝑃 𝑦 𝑥 :	Measurement model / inverse conditional / generative model

𝑃(𝑦): does not depend on x; normalization constant



State evolution and measurement: 
probabilistic  models
Evolution of state and measurements governed by probabilistic laws
𝑝 𝑥& 𝑥.:&/(, 𝑧(:&/(, 𝑢(:&) describes motion/state evolution model
• If state is complete, sufficient summary of the history then
• 𝑝 𝑥( 𝑥4:(5*, 𝑧4:(5*, 𝑢4:(5*) = 𝑝 𝑥( 𝑥(5*, 𝑢() state transition prob. 
• 𝑝 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

zt-1 zt
zt+
1

ut-1 ut
ut+
1

xt-1 xt
xt+
1

𝑥!"# = 𝑓 𝑥! , 𝑢!



Measurement model

Measurement process 𝑝 𝑧& 𝑥.:& , 𝑧(:&/(, 𝑢.:&/()
• Again, if state is complete
• 𝑝 𝑧( 𝑥4:(, 𝑧*:(5*, 𝑢*:() = 𝑝 𝑧( 𝑥()
• 𝑝 𝑧( 𝑥(): measurement probability
• 𝑝 𝑧 𝑥): time invariant measurement probability

zt-1 zt
zt+
1

ut-1 ut
ut+
1

xt-1 xt
xt+
1

𝑧! = 𝑔 𝑥!



Beliefs
Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data 
and we have to distinguish this inferred/estimated state from the actual state 𝑥(
𝑏𝑒𝑙(𝑥() = 𝑝(𝑥(|𝑧*:(, 𝑢*:()

Posterior distribution over state at time t given all past measurements and control. 
This will be calculated in two steps:

1. Prediction: 𝑏𝑒𝑙(𝑥() = 𝑝 𝑥( 𝑧*:(5*, 𝑢*:(

2. Correction: Calculating 𝑏𝑒𝑙(𝑥() from 𝑏𝑒𝑙(𝑥() a.k.a measurement update (will 
use Equation (*) from earlier)



Recursive Bayes Filter

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥&/( , 𝑢& , 𝑧&)
for all 𝑥& do:

𝑏𝑒𝑙 𝑥& = ∫ 𝑝(𝑥&|𝑢&,𝑥&/()𝑏𝑒𝑙(𝑥&/()𝑑𝑥&/(
𝑏𝑒𝑙 𝑥& = 𝜂 𝑝 𝑧& 𝑥& 𝑏𝑒𝑙(𝑥&)

end for
return 𝑏𝑒𝑙(𝑥&)

𝑏𝑒𝑙 𝑥!$#

𝑥!
𝑝′

1
𝑝!

2
𝑝"

3
𝑝#

𝑝 𝑥!|𝑢! , 1

𝑝 𝑥!|𝑢! , 2

𝑝 𝑥!|𝑢! , 3

𝑏𝑒𝑙 𝑥!$#

𝑏𝑒𝑙(𝑥!)

𝑝 𝑧! 𝑥!



Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥-, 𝑥?, 𝑒𝑡𝑐. Random state vector 𝑋(
𝑝?,(: belief at time t for state 𝑥?; discrete probability distribution

Algorithm Discrete_Bayes_filter( 𝑝?,(5* , 𝑢(, 𝑧():
for all 𝑘 do:

�̅�?,( = ∑- 𝑝(𝑋( = 𝑥?|𝑢(,𝑋(5* = 𝑥-)𝑝-,(5*
𝑝?,( = 𝜂 𝑝 𝑧( 𝑋( = 𝑥?)�̅�?,(

end for
return {𝑝?,(}

𝑏𝑒𝑙 𝑥!$#

𝑥"
𝑝′

1
𝑝!,%&!

2
𝑝",%&!

3
𝑝#,%&!

𝑝 𝑥%|𝑢! , 1

𝑝 𝑥!|𝑢! , 2

𝑝 𝑥!|𝑢! , 3

𝑏𝑒𝑙 𝑥!$#

𝑏𝑒𝑙(𝑥!)

𝑝 𝑧! 𝑥!



Grid Localization

• Solves global localization in some cases kidnapped robot problem
• Can process raw sensor data
• No need for feature extraction

• Non-parametric
• In particular, not bound to unimodal distributions (unlike Extended Kalman 

Filter)



Grid localization

Algorithm Grid_localization ( 𝑝!,#$% , 𝑢#, 𝑧#, 𝑚)
for all 𝑘 do:

�̅�!,# = ∑& 𝑝&,#$%𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑚𝑒𝑎𝑛 𝑥! , 𝑢#, 𝑚𝑒𝑎𝑛 𝑥& )
𝑝!,# = 𝜂 �̅�!,#𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧#, 𝑚𝑒𝑎𝑛 𝑥! , 𝑚)

end for
return 𝑏𝑒𝑙(𝑥#)
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Piecewise Constant Representation

),,( >=< qyxxBel t
Fixing an input ut we 
can compute the new 
belief  



Start

Motion Model without measurements

𝑚𝑒𝑎𝑛 𝑥%



Proximity Sensor Model

Laser sensor Sonar sensor

𝑥%

𝑝 𝑧! 𝑋! = 𝑥%)

𝑚
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Grid localization, 
𝑏𝑒𝑙 𝑥& represented by a 
histogram over grid 𝑝(𝑧|𝑥)

𝑝(𝑧|𝑥)



Summary

• Key variable: Grid resolution

• Two approaches
• Topological: break-up pose space into regions of significance (landmarks)
• Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs

• Important to compensate for coarseness of resolution
• Evaluating measurement/motion based on the center of the region may not be enough. If motion is updated 

every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naïve implementation will not have any 
state transition!

• Computation
• Motion model update for a 3D grid required a 6D operation, measurement update 3D
• With fine-grained models, the algorithm cannot be run in real-time
• Some calculations can be cached (ray-casting results) 
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Grid-based Localization
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Sonars and 
Occupancy Grid Map 



Monte Carlo Localization 

• Represents beliefs by particles 



• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate 
the state space 

• Key idea: represent belief 𝑏𝑒𝑙 𝑥( by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can 
represent a broader set of distributions than e.g., Gaussian 

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap 
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian 
Networks: [Kanazawa et al., 95]d

Particle Filters



Particle filtering algorithm 
𝑋! = 𝑥!

[#], 𝑥!
[%], … 𝑥!

[&] particles

Algorithm Particle_filter(𝑋!'#, 𝑢! , 𝑧!):-𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

sample 𝑥!
[(]~𝑝 𝑥! 𝑢! , 𝑥!'#

[(])

𝑤!
[(] = 𝑝 𝑧! 𝑥!

(

-𝑋! = -𝑋! + ⟨ 𝑥!
( , 𝑤!

[(]⟩
end for
for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

ideally,  𝑥#
[B] is selected with probability prop. to 

𝑝 𝑥# 𝑧%:#, 𝑢%:#)
L𝑋#$% is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 𝑤# or weight 

// resampling or importance sampling; these are 
distributed according to 𝜂 𝑝 𝑧# 𝑥#

[B] 𝑏𝑒𝑙 𝑥#
// survival of fittest: moves/adds particles to parts of 
the state space with higher probability



Weight samples: w = f / g

Importance Sampling

suppose we want to compute 𝐸, 𝐼 𝑥 ∈ 𝐴 but 
we can only sample from density 𝑔

𝐸, 𝐼 𝑥 ∈ 𝐴

= ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫ , -
. -

𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥
= 𝐸. 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0



Monte Carlo Localization (MCL)
𝑋! = 𝑥!

[#], 𝑥!
[%], … 𝑥!

[&] particles

Algorithm MCL(𝑋!'#, 𝑢! , 𝑧!,m):
-𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

𝑥!
[(] = 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢! 𝑥!'#

[(])

𝑤!
[(] = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧! , 𝑥!

( ,()
-𝑋! = -𝑋! + ⟨ 𝑥!

( , 𝑤!
[(]⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

Plug in motion and measurement models 
in the particle filter



Particle Filters
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ò¬- 'd)'()'|()( , xxBelxuxpxBel

Robot Motion
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Robot Motion
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Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten Ultrasound 
Scans
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After Incorporating 65 Ultrasound Scans
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Estimated Path



Using Ceiling Maps for Localization



Vision-based Localization

P(z|x)

h(x)
z



Under a Light
Measurement z: P(z|x):



Next to a Light
Measurement z: P(z|x):



Elsewhere
Measurement z: P(z|x):



Global Localization Using Vision
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Limitations

• The approach described so far is able to 
• track the pose of a mobile robot and to
• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot 
problem)?
• How to handle localization errors/failures? 
• Particularly serious when the number of particles is small
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Approaches
• Randomly insert samples 

• Why? 
• The robot can be teleported at any point in time

• How many particles to add? With what distribution? 
• Add particles according to localization performance
• Monitor the probability of sensor measurements  𝑝(𝑧!|𝑧#:!0#, 𝑢#:! , 𝑚)

• For particle filters: 𝑝(𝑧!|𝑧#:!0#, 𝑢#:! , 𝑚) ≈
#
1
∑𝑤!

[3]

• Insert random samples proportional to the average likelihood of the 
particles (the robot has been teleported with higher probability when the 
likelihood of its observations drops). 
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Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:



77

Kidnapping the Robot
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Summary
• Particle filters are an implementation of recursive 

Bayesian filtering
• They represent the posterior by a set of weighted 

samples.
• In the context of localization, the particles are 

propagated according to the motion model.
• They are then weighted according to the likelihood of 

the observations.
• In a re-sampling step, new particles are drawn with a 

probability proportional to the likelihood of the 
observation. 


