Previously on control

- ODE models, Solutions, equilibria
- Designing controller, PID, Stale feedback

$$
\alpha_{t} \quad x(t)=0
$$

- Hurwitz condition for linear systems $\dot{x}=A x$

Today - Requirements
Stability
Asymptotic stability

- General method for proving stability
- Relationship to invariants
- Balls, sub-level sets

What are requirements for a control system
(o) State variables stay bounded
(1) Invariance $\forall x(0) \in \theta \quad \forall t \quad x(t) \in I_{\theta} \leftarrow$ Some
(2) Sets f invariants
(3) Convergence to equilibria
(4) Small inputs to $\dot{x}=f(x, u)$ produce small outputs BIBO

Setup. We are studying an ODE $\dot{x}=f(x)$

$$
x \in \mathbb{R}^{n} \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Assume that the origin $\overrightarrow{0} \in \mathbb{R}^{n}$ is an equilibrium. i.e. $f(\vec{O})=\overrightarrow{0}$
if not apply appropriate coordinte transformtof.
You have aready seen that for linear systems

$$
f(x)=A x
$$

$\dot{x}=A x$ is asymptotically stable at $\overrightarrow{0}$ if for every eigenvalue λ_{i} \& $A \quad \operatorname{Re}\left(\lambda_{i}\right)<0$ Hurwitz criterion.

Tody: General nonlinear systems.

Def. $B_{r} \subseteq \mathbb{R}^{n}$ is the ball of radius r centered at $\overrightarrow{0}$ ie. $\quad B_{r}=\{x|\quad| x \mid \leqslant r\}$

Def. Lyapunov stability
The system $\dot{x}=f(x)$ is Lyapunov (Sable (Lyapunov stable) if $\forall \varepsilon>0 \quad \exists \delta>0$ such that if $x(0) \in B_{\delta}$ then $\forall t \quad x(t) \in B_{\epsilon}$.

Otherwise the system is Unstable

Def. The system is asymptotically stable if it is Lyapunov stable and $\underset{t \rightarrow \infty}{\mathcal{L t}_{t \rightarrow \infty} x(t)} \rightarrow 0$.

$$
B(x, r)=\left\{x^{\prime} \in \mathbb{R}^{n}| | x-\left.x^{\prime}\right|_{p} \leqslant r\right\}
$$

If $r_{2} \geqslant r_{1}$ then $B\left(x_{1} r_{1}\right) \subseteq B\left(x, r_{2}\right)$
Parameters defining the set
x : Center
r : radius
p : norm / distance measure
n : dimension

Factoid
for $r=1$
What is the volume of an n-dimensional sphere of unit radius

$n=1$	2
2	π
3	$\frac{4}{3} \pi$

Relating Invariance \& Stability
Recall. I $\subseteq \mathbb{R}^{n}$ is an invariant of $x_{t+1}=f\left(x_{t}\right)$ provided $x_{0} \subseteq I$ and $f(I) \subseteq I$

How is Lyapunou stability related to invariance?

How to prove stability?
How do you prove aprogram like this terminates?

While $(x \geqslant 0)$

$$
x=f(x)
$$

Do you think this is easy?
Example

$$
\begin{aligned}
& \text { While }(n>1) \\
& \qquad \begin{aligned}
f(n) & =n / 2 & & \text { if } n \equiv 0(\bmod 2) \\
& =3 n+1 & & \text { if } n \equiv 1(\bmod 2)
\end{aligned}
\end{aligned}
$$

Does this always end with $n=1$?

Generally proving termination is undecidable but we try to find a ranking function $R: X \rightarrow \mathbb{N}$ energy function
such that $\forall x \quad R(x) \geqslant 0$ and $R(f(x))<R(x)$

Similar idea for ODEs
Thu. Suppose there exists a positive definite, radially unbounded, Continuous function $V: \mathbb{R}^{n} \rightarrow \mathbb{R} \geqslant 0$ such that
$\dot{V} \leqslant 0$ then $\dot{x}=f(x)$ is Lyapunov stable.
$\dot{v}<0$ then $\dot{x}=f(x)$ is asymptotically stable.

Positive definite: $\forall x \neq 0 \quad f(0)>0$
Radially unbounded: $x \rightarrow \infty \quad f(x) \rightarrow \infty$
iv? $\quad V: x \rightarrow \mathbb{R} \quad V(x)$
V is a.function f the state $V(x)$ and x state is a function f time So, really $V(x(t))$

$$
\dot{V}=\frac{d}{d t} V(x(t))=\frac{\partial V}{\partial x} \cdot \frac{d x(t)}{d t}=\frac{\partial V}{\partial x} \cdot f(x)
$$

Example

$$
\begin{aligned}
& \dot{x}=-a \sin ^{2}(x)=f(x) \\
& v(x)=x^{3}+6
\end{aligned}
$$

Note. we never solved the ODE!
V: Lyapuner function

Ex. $\quad \dot{x}=-x \quad \dot{y}=-y$
Candidate $\quad V=\frac{x^{2}+y^{2}}{2}$

$$
\dot{v}=\left[\begin{array}{ll}
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]\left[\begin{array}{l}
-x \\
-y
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
-x \\
-y
\end{array}\right]=-\left(x^{2}+y^{2}\right)
$$

\vec{O} is globally asymptotically stable
EX $\left[\begin{array}{l}\dot{x} \\ y\end{array}\right]=\left[\begin{array}{l}-x+y^{2} \\ -2 y+3 x^{2}\end{array}\right]$
How mary equilibria?

Consider $V(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{4} \quad$ P.D. \& RU.

$$
\begin{aligned}
\dot{V}(x, y) & =\left[\begin{array}{ll}
x & y / 2
\end{array}\right]\left[\begin{array}{c}
-x+y^{2} \\
-2 y+3 x^{2}
\end{array}\right] \\
& =-x^{2}+x y^{2}-y^{2}+\frac{3}{2} x^{2} y \\
& =-x^{2}\left(1-\frac{3}{2} y\right)-y^{2}(1-x)
\end{aligned}
$$

This is -ie $\forall \quad x<1 \quad y<2 / 3$
\therefore Origin is asymptotically stable but not globally

Level sets and Sublevel-Sets for any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$, the a-level set of f is the set $L_{a}=\left\{x \in \mathbb{R}^{n} \mid f(x)=a\right\}$ a - Sublevel set $S_{a}=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq a\right\}$
Obviously $a_{1} \leqslant a_{2} \Rightarrow$

$$
\begin{array}{cc}
S_{a_{2}} \subseteq S_{a_{1}} & f(x) \\
\begin{array}{c}
B(0, r)=S_{r} \\
f_{0} \\
|x|
\end{array} & a_{1}
\end{array}
$$

Corollary. Consider a nonlinear system $\dot{x}=f(x)$ and suppose V is a Lyapunov function. Then every sublevel Set La containing $x(0)$ is an invariant

How to find Lyapunor functions?
Guess a template (e.g. quadratic)

$$
\begin{aligned}
V(x)= & a_{1} x_{1}^{2}+a_{2} x_{1} x_{2}+a_{3} x_{2}^{2}+ \\
& a_{4} x_{1}+a_{5} x_{2}+a_{6}
\end{aligned}
$$

Then solve for parameters $a_{1} \ldots a_{6}$ with constraints

$$
\frac{\partial v}{\partial x} \cdot f(x) \leqslant 0
$$

Can often be solved using Convex optimization

For linear systems $\dot{x}=A x \quad x \in \mathbb{R}^{n}$
The there is always a quadratic
Lyapunov function if the system is stable.

Quadratic function

$$
X^{\top} X=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
x^{\top} p \times, p \in \mathbb{R}^{n \times n}=x_{1}^{2}+x_{2}^{2}
$$

general quadratic form (unknown P)

$$
\begin{aligned}
V(x): & =x^{\top} P x \quad \text { Guessed form } \\
\dot{V}(x) & =\dot{x}^{\top} P x+x^{\top} P \dot{x} \quad[\text { chain rule }] \\
& =(A x)^{\top} P x+x^{\top} P(A x) \\
& =x^{\top}\left(A^{\top} P+P A\right) x
\end{aligned}
$$

Set this to

$$
=-x^{\top} Q x
$$

that is Fix Q to be positive definite and symmetric matrix $\mathbb{R}^{n \times n}$

$$
\text { e.g } \quad Q=\left[\begin{array}{llll}
1 & 0 & 0 \\
0 & 1 & 0 & \cdots \\
0 & \cdots & 0
\end{array}\right]=I
$$

Solve for P in $A^{\top} P+P A=-Q$
L asuno e uati

Figure 3.8
Trajectories of the simple economy model. Left: Phase portrait for the model of Equation (3.24) for $\alpha=3, \beta=1.5, k=.1$, and $g_{0}=3$. the sublevel sets of the Lyapunov function are shown in dotted lines. Right: Evolution of the solutions over time.

Summary - Definitions

- Definitions f Stability
and Asymptotic stability
- Lyapunov's method for proving
stability of Nonlinear systems
- Relationship to invariants ; Sub-level sets

Additional reading
Proof of Lyapunov's Method

Proof.(a) Fix $\varepsilon>0$. We fave to find $\delta_{\varepsilon}>0$ such that for any $x_{0} \in \mathbb{R}^{n}$ if $\left|x_{0}\right| \leqslant \delta_{\varepsilon}$ then $\forall t>0$

$$
\left|\xi\left(x_{0}, t\right)\right| \leqslant \varepsilon .
$$

Pick $a>0$ such that

$$
S_{a} \subseteq B(0, \varepsilon) \quad[\text { Why } \exists a ? \text { by continuityfv] }
$$

Pick δ_{ε} such that $B\left(0, \delta_{\varepsilon}\right) \subseteq S_{a}$
Now consider any $\left|x_{0}\right| \leqslant \delta_{\varepsilon}$

$$
V\left(\xi\left(x_{0}, t\right)\right) \leqslant V\left(\xi\left(x_{0}, 0\right)\right)=V\left(x_{0}\right) \leqslant a
$$

By $\operatorname{def} f S_{a} \quad\left\{\left(x_{0}, t\right) \in S_{a} \subseteq B\left(0, \delta_{\varepsilon}\right)\right.$

$$
\text { 1.e. }\left|\xi\left(x_{0}, t\right)\right| \leqslant \varepsilon
$$

(b) Consider any ∞ tray with $\left|\xi\left(x_{0}, 0\right)\right| \leqslant \delta_{\varepsilon}$

As $V(\xi(t)) \geqslant 0$ and decreasing as $t \rightarrow \infty$ \exists a limit $c \geqslant 0$.

$$
\alpha_{t \rightarrow \infty} V\left(\xi\left(x_{0}, t\right)\right)=c
$$

If $c=0$ then $\alpha_{t \rightarrow \infty} V\left(\xi\left(x_{0}, t\right)\right)=0$ and since $V(x)=0 \Leftrightarrow x=0$

$$
\begin{equation*}
\Rightarrow \alpha_{t \rightarrow \infty}\left\{\left(x_{0}, t\right)=0\right. \tag{ASS.}
\end{equation*}
$$

Else $c>0$.
That is system evolves in the donut $0:=B(0, \varepsilon) \backslash B(0, r)$ for
some small but tie r.
As this set is Compact
Let $d=\max \quad \dot{V}(x)<0$ [slowest rate of $x \in O \quad$ decrease $]$
Thus $\forall t \quad V\left(\xi\left(x_{0}, t\right)\right) \leq V\left(\xi\left(x_{0}, 0\right)\right)$ $+d . t$
But then for any suck d we can find at so that $V\left(\xi\left(x_{0}, t\right)\right)<c$ which contradicts (\#).

