ECE484 FA23 Final Project Overview

Yan Miao

26 Sep 2023

University of Illinois Urbana-Champaign

Overview

- Important Announcement
- Project Timeline
- Project Goal
 - F1-tenth
 - GEM e2
 - GRAIC
- Staff Team
- Q&A

Important Announcement

Important Notes

• Read the documentation carefully

- For example:
 - "lab computer does not have ROS installed so I cannot finish this", we have "source /opt/ros/noetic/setup.bash"
 - Missing 4th rosbag in MP1 Demo
 - Check Campuswire regularly

Office Hour Usage

- Start your work early, office hour are largely empty for first couple weeks of MPs
- Open OH this Friday(9/29) for exam questions during discussions
- ECEB 5072 / GEM / F1-Tenth
 - Do not globally install libraries (E.g. nvidia-driver mismatch)
 - Report non-working lab computer immediately
- Read online Linux / Python Tutorial

Logistics

• HW0-1, MP0-1

- Grades out by end of today (9/26)
- Regrades due by 10/3 through private post on Campuswire
- Regrades feedback by 10/10

• Exam1

- 10/3 during lecture time
- Details refer to Campuswire post
- HW2, MP2
 - Due 10/6
- HW3, MP3
 - Release on 10/13
 - Due on 10/27
- Projects

Project Timeline

Project Timeline

- **10/3**: Google Form for team sign-up (2-4 people, can be different from MP)
- **10/10** Finalize Team Assignment & Start Safety Training
- **10/24-26**: Pitch Presentation (10%)
- **11/10**: Mid Check-in (10%)
- **11/30, 12/5**: Final Presentation (30%)
- **12/12**: Final Report(40%), Videos (10%)

Project Goal

F1-tenth

- Sensor: Camera, 2D LiDAR, Vicon 3
- Control: Ackermann (Steering + Speed)
- Goal: Lane Detection and Lane Following
 - F1-tenth should rely ONLY on Camera to complete 3 laps with state estimation
- Extra Credit: Obstacle Detection and avoidance (5% project grades)
 - For example:
 - F1-tenth should stop safely in time when obstacle appears on any part of lane
 - Speed Control over different part of tracks
- Note the extra time and constraints the hardware project have
 - E.g. Safety Procedure; IRL Reservation; Equipment; Lighting; Calibration

GEM

- Sensor: Camera, 3D LiDAR, GPS, Radar
- Control: (Throttle, Brake, Steering)
- Goal: Lane Detection and Lane Following
 - GEM should rely ONLY on Camera to follow curve lanes with state estimation at Highbay
- Extra Credit: Obstacle Detection and avoidance (5% project grades)
 - GEM should stop safely in time when obstacle appears on any part of lane
 - Speed Control over Curve
- Note the extra time and constraints the hardware project have
 - E.g. Safety Procedure; Highbay Reservation; Weather; Sim-to-Real Gap

- Sensor: Ground Truth Track Info
- Control: (Throttle, Brake, Steering)

- Goal: Track Following
 - Your Controller should finish 4 tracks with 2 scenarios in specified time
- Extra Credit: Using Vision (5% project grades)
 - Instead of using ground truth track info, you use camera sensor as inputs.

UIUC ECE484 FA2023

GRAIC Autonomous Racing Competition

Bring together researchers in AI, robotics & control; platform for comparing algorithms in dynamic and uncertain environments

GRAIC'22 part of CPS-IoT Week, 16 submissions, 5 teams, 3 universities, one company

Outreach: Engineering Open House and the Summer Camp

Submitted controllers become *benchmarks* for testing and verification research

- Race score a function of timing, collisions, violation of complex race rules (right of way)
- Scoring a controller is a software testing problem

Continuous integration and testing for autonomous racing software. Jiang, Miller, Sun, Ozay, and Mitra. *ICRA 2021 Workshop on Opportunities and Challenges in Autonomous Racing.*

GRAIC Infrastructure

Controller and testing environment

GRAIC interfaces

• Input / Output Interfaces

f	<pre>run_step(self, filt """</pre>	ered_obstacles, waypoints, vel, transform, boundary):
	Execute one step of	navigation.
	Args:	
	obstacles	
	– Type:	List[carla.Actor(),]
	- Description:	All actors except for EGO within sensoring distance
	waypoints	
	– Туре:	List[[x,y,z],]
	- Description:	List All future waypoints to reach in (x,y,z) format
	vel	
	– Туре:	carla.Vector3D
	- Description:	Ego's current velocity in (x, y, z) in m/s
	transform	
	– Туре:	carla.Transform
	- Description:	Ego's current transform
	boundary	
	- Type:	List[List[left boundary], List[right boundary]]
	- Description:	left/right boundary each consists of 20 waypoints,
		they defines the track boundary of the next 20 meters.
	Return: carla.VehicleControl() <steering +="" brake="" throttle=""></steering>	

GRAIC Testing Pipeline

Example of Expected Controller Behavior

Staff Team

Staff Team

- **GEM:** Hongyi, John, Hang
- **F1-Tenth:** Ye-ji, Sumedh, Hang

• **GRAIC:** Yan

Polls & Q&A

UIUC ECE484 FA2023