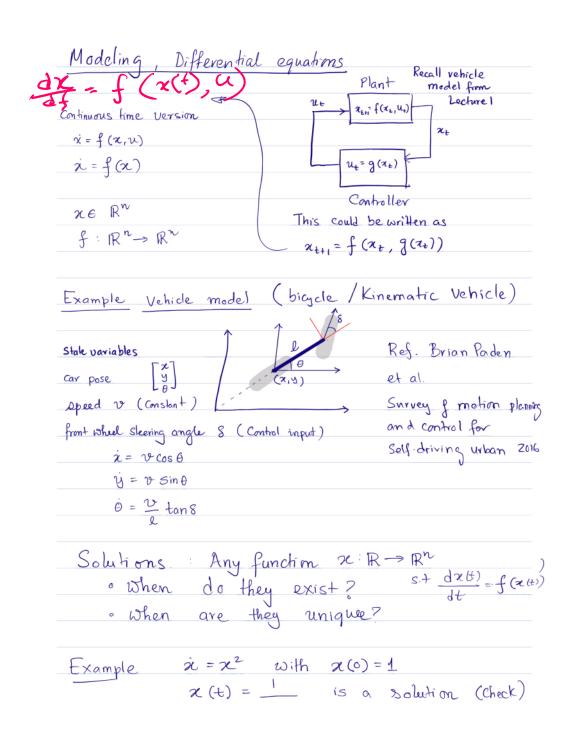
What is control theory? The art of making things do what you want them to do. art: in this clam, parameterized controllers or algorithms and ways of tuning those parameters things: here: phenomena that can be represented with differential equations That: in this class, follow some desired set-point, path, or trajectory Example as long as $x < x^*$

Road map	for control (differential e
	dutions
- Control de	
	n loop
	ed 100p
- PID	p
	e feedback
	C (mention)
- Requiremen	ats - Stability
Lyapu	nts - Stability nov theory Relation to
	variance
, , ,	



but as $t \to 1$ $x(t) \to \infty$ blows up existence of solution is an issue

Example $\dot{z} = \sqrt{z}$ has two solutions z(t) = 0 $z(t) = t^{2/4}$ Uniqueness is a problem

Additional condition on fDef $f: \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous if $\exists L>0$ such that for any pair $x, x' \in \mathbb{R}^n$ $|| f(x) - f(x') || \le L || x - x' ||$

Example 62+4 5 121 are Lipschitz

all differentiable functions with

bounded derivatives one Lipschitz continuous

Non-Examples \sqrt{x} , x^2 are not Lipschitz

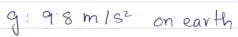
Thm if f(x(t), u(t)) is Lipschitz continuous in the first argument and u() is

piece-wise continuous then $\dot{x} = f(x(t), u(t))$ has unique solutions

Example Pendulum

$$x_1 = 0$$
 $x_2 = 0$

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = \frac{9}{e} \sin(x_1) - \frac{k}{m}x_2$



m: mass

$$\begin{bmatrix} x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} -g/\ell & \sin(x_1) - \frac{k}{m}x_2 \\ x_2 \end{bmatrix}$$

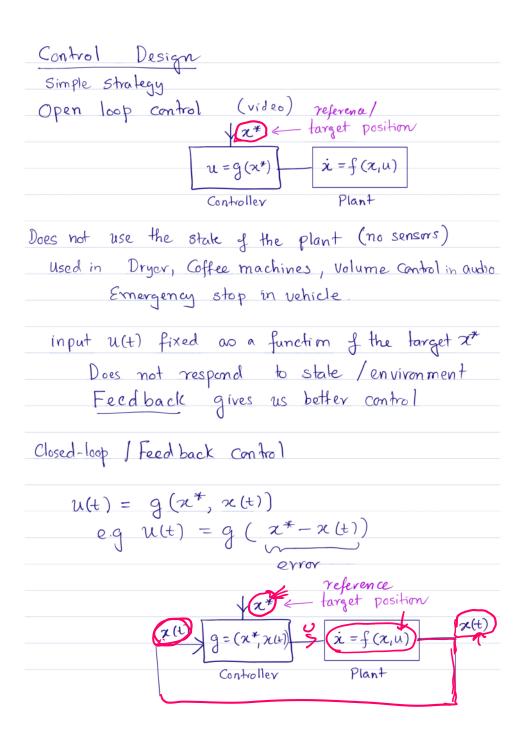
When does the pendulum not move?

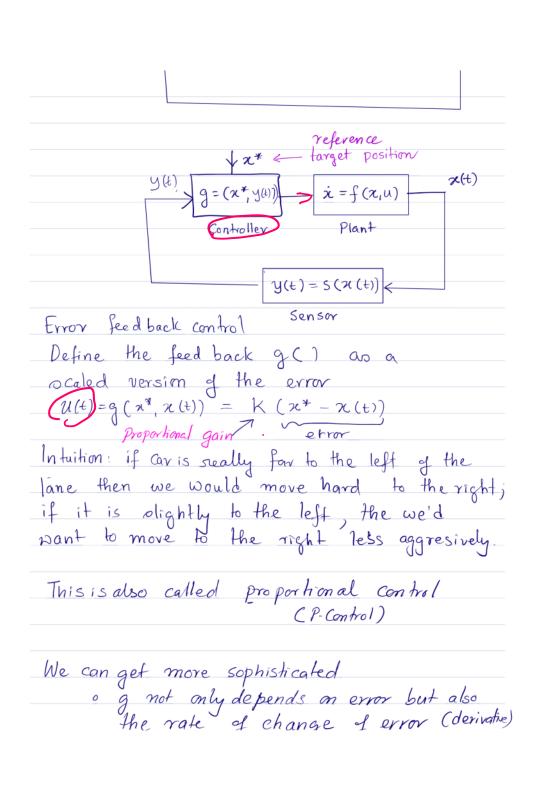
$$\dot{x} = f(x) = 0$$
 set RHS = 0

$$x_1 = 0$$
 $x_1 = 0, T$

Def These are the equilibria of the System, i.e states 2* such that $f(z^{\sharp})=0$

Recall model - reality gap
As in automata models the gap exists here
tradeoff
more detailed Complex, intractable
more detailed Complex, intractable more accurate harder to analyze
In this class we will focus on Linear ODEs
$\dot{x} = f(x_i u) = A(t)x(t) + B(t)u(t)$
Any linear function can be represented in this
form, f: R" × R" -> R"
A(t) & Rnxn a matrix; the entries
B(t) ∈ R ^{m×n} Can be functions f time t
Linear time varying system (LTV)
if A(t) B(t) are independent of time
then linear time Invariant (LTI) System





```
· g also depends on the history of
                                                                      the error (integral)
u(t) = k_p(e(t)) + k_{\overline{L}} \int_{0}^{t} e(\tau) d\tau + k_{\overline{D}} \int_{0}^{t} de(t)
                                      P \qquad I \qquad D
= K_{p} \left[ e(t) + \frac{1}{T_{1}} \int_{-T_{1}}^{t} e(\tau) d\tau + T_{0} \frac{de(t)}{dt} \right]
   Tuning the gains is an art
    Example \dot{y}(t) = u(t) + d(t) = disturbance

1 Control input

Using only proportional control

[40]
                                                        u(t) = -k_{\rho}e(t)
                                                                                           =-k_{p}\left( \mathcal{Y}(t)-\mathcal{Y}^{*}\right)
                                                   \dot{y}(t) = -k_p (y(t) - y^*) + d(t)
                                                                                     = -k_p y(t) + k_p y^* + d(t)
           Suppose the Steady disturbance d(t) = dss

y(t) = -kpy(t) + Kpy* + dss KPYss
                What is the steady state output?
                y(t) = \frac{ds_s}{k_p} + y^* \left[ \text{not } y^* \right]
define \quad y_{ss} = \frac{ds_s}{k_p} + y^* \implies \text{kp } y_{ss} = \frac{ds_s}{k_p} + y^*
```

V	
What is the transient behavior?	
Ψ(4) = -	$ \dot{\chi} = -ax $ $ (x(t) = e^{-at} $
$\dot{y}(t) = -k_p y(t) + K y_{ss}$ Nhat is the solution of this ODE	$\dot{x} = -ax + b$
_ t/T	
$y(t) = y(0)e + y_{ss} (1 - e)$	
where $T = 1/k\rho$	
We can make the yes sleady stale errors small	
at the expense of y(0) increasing	j Rp
Slower convergence/	
longer transients	

Path following controller

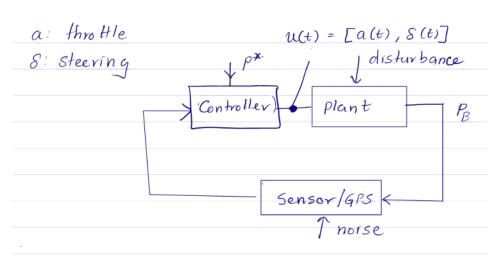
Recall bicycle model for vehicle S_n Consider the slake of the S_n Vehicle $[x_B, y_B, \theta_B v_B] \in \mathbb{R}^4$ Consider a target position P^* on a path (Chosen by a higher level planner) $P_n = [x_B, y_B, \theta_B, v_B]$ The error is now a vector $P_n = [S_n, S_n, \theta_n, \theta_n, \theta_n] = [S_n, S_n, \theta_n, \theta_n]$ along track error and cross-track error

Distance ahead or behind the target p^* in the instatitaneous direction of motion $S_s = G_s \Theta_B(t)$. $(x^*(t) - x_B(t)) + S_{in}\Theta_B(t) (y^*(t) - y_B(t))$

cross track error : orthogonal to the intended direction of motion

 $\delta_n = -\sin(\theta_B(t))(x^*(t) - x_B(t)) + \cos\theta_B(t)(y^*(t) - y_B(t))$

Heading error $S_{p} = \theta^{*}(t) - \theta_{B}(t)$ Velocity error $S_{v} = v(t) - v_{B}(t)$



Now you can apply PID or state-feedback control after linearization

Pure-pursuit controller

$$u(t) = K \begin{bmatrix} 8s \\ 8n \\ 8\theta \end{bmatrix} \quad K = \begin{bmatrix} k_s & 0 & 0 & k_b \\ 0 & k_n & k_\theta & 0 \end{bmatrix}$$

This performs PD-Control to correct against along-track error and Cross-track error