ECE 484

8/23

Lecturez : System-level Safety

Automata Today: Nondeferminism Executions - testing Reachability ! Post computations Invariance

Def. A state machine or automaton A is defined by (1) a set of <u>states</u> Q (2) a set of <u>start states</u> Qo = Q (3) a set of transitions D = Q x Q transition relation Example brake) (Cruise) Speed up $\mathcal{G} = \{c, B, S\} \quad \mathcal{Q}_{\circ} = \{c\}$ D = {<B,c>,<c,B>, <c,c>, <c,s7, <s,c> ᡝ

Nondéferministic. - From the same state A can go to different states - Useful for modeling uncertainty e.g. action of human driver or environment.

 $D: Q \longrightarrow O(Q)$

We can have both nondeterminism & probabilistic uncertainty Markov Decision Procenes

Deterministic automaton $|Q_0| = 1$ and $\forall q \in Q, q_1 q_2 \in Q$ if $\langle q, q_1 \rangle \in D$ and $\langle q, q_2 \rangle \in D$ then $q_1 = q_2$

Often D will be described by a program or a physics model (differential equations)

 $\begin{aligned} & \text{If } \mathcal{X}_2 - \mathcal{X}_1 < d_s \\ & \mathcal{V}_1 := \max\left(0, \mathcal{V}_1 - a_b\right) \\ & \text{else } \mathcal{V}_1 := \mathcal{V}_1 \\ & \mathcal{X}_1 := \mathcal{X}_1 + \mathcal{V}_1 \\ & \mathcal{X}_2 := \mathcal{X}_2 + \mathcal{V}_2 \end{aligned}$

Do you see how this defines D? 15 it deterministic?

With some abuse of notation we Can represent nondeter ministic models also as programs $v_1 := \text{Choose } \left[v_1 - b_1 , v_1 - a_1 \right]$ Fautly Sensor Executions. Hn execution is a particular behavior of the automaton A. $\alpha = q_0 q_1 q_2 \dots$ finite or infinite Such that (i) $q_{,o} \in \mathbb{Q}_{o}$ (ii) $(Q_i, Q_{i+1}) \in D \quad \forall i$ Nondeterministic automata have many executions. A "Test" ~ one Execution

Requirements of a design
Examples? " Carl eventually catches up of C2"
" Carl and car2 never collide" galety
" Carl never goed backwards"
" Carl does not reneed speed limits"
These are safety requirements because
we want A to always satisfy them.
We can express the safety requirements
as
(1) A formula involving the state
variables. e.g.
$$S_1 := [X_1 - X_2] \ge 0.1$$

(2) A subset of Q
 $[S_1] \subseteq Q = R^4 = \{< x_1, v_1, x_2, v_2>\}$ $[X_1 - X_2] \ge 0.1$

Generally runsafe Q []s,]Umsa 's^c [[s,]] Safety Verification Problem Does there exist any execution x=qo···· qk of A such that qk€ S°? Such an execution is called a Counter- example Def. If for every finite execution &= 90...9k of A and for every q; in a, q; ES then we say A is safe w.r.t. S. -70

Post(R)

30

Post (Post (R))

Reasoning about all executions

Def. For any set of states $R \subseteq Q$ $Post(R) := \Xi q' \in Q \mid \exists q \in R \text{ and } \langle q, q' \rangle \in D$

Exercise The Post () operator is monotonic if $R_1 \subseteq R_2$ then $Post(R_1) \subseteq Post(R_2)$ Proof. Choose any RIERZEQ Choose any $x \in Post(R_1)$ [we have to show $x \in Post(R_2)$] By def of Post Jxo ER, <xo,x>ED Since $R_1 \subseteq R_2 \implies X_0 \in R_2$ $\Rightarrow \times \in Post(R_2)$

We can apply Post recursively. Def Post^k: $2^{Q} \rightarrow 2^{Q}$ Post^o(R) = R k=0Post (R) = Post (Post R-1 (R)) K>0

Exercise Post R(Q.) is exactly the set f states that the automaton can reach ofter executions Post K(Q.) of length k. Post (Q.) froof. - Post K-1 Post(Q.) $\begin{bmatrix} T \\ V \\ P_{ost}^{R}(Q_{o}) \end{bmatrix} \begin{bmatrix} [S^{c}] = \phi \\ R = 0 \end{bmatrix}$ Reachability analysis tools can Compute or over approximate post () E.g. Verse, Space Ex, Flow

In general Computing Post ^k (R) can be hard (1) Q high dimensional (2) D complex, (3) k large

Alternative Solution to Safety verification Problem

Find an inductive invariant for Proving safety of S. inductive invariant Thm if there exists I GQ Such that $(1) Q_0 \subseteq I (2) Post (I) \subseteq I$ Then all executions f f stay in I. Further if $I \subseteq S$ then Then A is safe w.r.t S.

Safficient condition for proving Safety

Requires us to find I existential not constructive not unique I necessarily Proof. Consider any execution of \mathcal{A} $\alpha = q_0 q_1 \cdots q_k$. We will prove by induction on k that $\forall i \ q_i \in \mathbb{T}$. Base case. $k = 0 \quad \alpha = q_0 \in Q_0 \subseteq \mathbb{T}$ by (1)

Inductive step. $\alpha = q_0 \dots q_{k-1} q_k$ and $q_{k-1} \in I$. We will show $q_k \in I$. By (2) Post(I) $\subseteq I$ as $q_{k-1} \in I \implies q_k \in I$ Therefore $\forall i \ q_i \in I$ Further if $I \subseteq S$ then $\forall i \ q_i \in S$

Simple invariant and safety
$S_1 := \mathcal{V}_1 \ge 0$
How to prove that Carl never moves back?
Choose I, = [[S,]] This may not alwayo work
Use inductive invariance theorem Does I, meet the conditions (1) (3)?
(1) ≠ qo ∈ Qo Qo. V10 > 0 [we assumed this]
\Rightarrow $q_{0} \in [[s_{1}]]$
(2) $P_{ost}(I) := \left\{ q' \mid q \in I \text{ and } (q,q') \in D \right\}$
For any state $q \in I$ if $q \cdot v_1 \ge 0$ and $(q,q') \in D$ then we have to
Show that $q'. v_i$ is also $\gg 0$

How are g and g' related by D? Sensor distance Note If x2-x4 < ds $v_i := \max(0, v_i - a_b)$ $q'.v_{i} = max(0, q.v_{i} - q_{b})$ else $v_{i} = v_{i}$ braking $\boldsymbol{x}_{l} := \boldsymbol{x}_{l} + \boldsymbol{v}_{l}$ deceleration 70 $\chi_2 := \chi_2 + \mathcal{V}_2$ $q' \in \llbracket S_1 \rrbracket = \rrbracket$ $P_{ost}(I) \subseteq I$ It follows that Si is indeed an invariant; Carl never goes backwards.

Another Safety requirement

 $S_2: \chi_1 < \chi_2$

15 Sz an inductive invariant? $(1) Q_0 \leq S_2 \checkmark O < \pi_0 < \pi_{20}$

(2) $Post(S_2) \subseteq S_2$?

Not necessarily true
if
$$q.v_1 \gg q.z_2 - q.z_1$$

then $q'.z_1$ may exceed $q'.z_2$
We cannot prove S_2
we need to add or "discover"
assumptions about $d_s, q_b \dots$
to prove S_2 .
Add more information in the model
limer := 0
If $z_2 - z_1 < d_s$
Sensor distance
If $z_2 - z_1 < d_s$
if $v_1 > a_b$ then
 $v_1 := v_1 - a_b$
timer := $d_1 = 0$
else $v_1 := 0 - e$
 $z_1 := z_1 + v_1$
 $z_2 := z_2 + v_2$

$$J_{3} \quad \text{timer} \leq \frac{v_{10} - v_{1}}{a_{b}}$$
(1) $q_{0} \cdot \text{timer} = 0 \leq \frac{v_{10} - v_{10}}{a_{b}} \leq 0$
(2) $q \in I_{3} \Rightarrow q' \in I_{3}$
Three cases to consider

A. if $q_{.}\chi_{2} - q_{.}\chi_{1} \leq d_{5}$ and $q_{.}v_{1} > q_{b}$

then $q'_{.}$ timer = $q_{.}$ timer + 1

 $\leq v_{10} - q_{.}v_{1} + 1$

 $= v_{10} - (q'_{.}v_{1} + a_{b}) + 1$

 $= v_{10} - q'_{.}v_{1}$

 q_{b}

B. if
$$q_1 \chi_2 - q_1 \chi_4 < d_s$$
 and $q_1 \vartheta_1 \leq q_b$
 q_1^{\prime} timer = q_2 timer
 $\leq \vartheta_{10} - q_2 \vartheta_1 + 1$
 q_b^{\prime}

Uses
$$v_1 \ge 0$$

 $\leq \frac{v_{10} + 0}{a_b} + 1$
C. if. $q_1 x_2 - q_1 x_1 \ge d_s$
 $q'.timer = q_timer \le \frac{v_{10} - q_1 v_1}{a_b} + 1$
 $\leq \frac{v_{10} - q'.v_1}{a_b} + 1$
 $I_3: timer \le \frac{v_{10} - v_1}{a_b} \text{ and } v_1 \ge 0$
 $\Rightarrow timer \le \frac{v_{10}}{a_b}$
Still not enough to prove $x_2 - x_1 \ge 0$
Max distance traversed by Carl after
delection $\le v_{10} \cdot timer \le v_{10}^{2}$
 $S_0, if d_s \ge v_{10}^{2}/a_b \text{ and } v_2 \ge 0$
then $I_3 \Rightarrow S_0: x_2 \ge x_1$

