ECE484 8/23

Lecture z: System-level Safely

Today: Automate
Nondeterminism
Executions - testing
Reachability. Post computations
Invariance

Def. A state machine or automaton A is defined by
(1) a set of states Q
(2) a set of start states $Q_{0} \subseteq Q$
(3) a set of transitions $D \subseteq Q \times Q$
transition relation
Example.

$$
\begin{aligned}
& Q=\{c, B,\rangle\} \\
& D=\{\langle B, C\rangle,\langle c, B\rangle,\langle C, c\rangle,\langle C, s\rangle,\langle s, C\rangle
\end{aligned}
$$

\}

Nondefer ministic.

- From the same state A can go to different states
- Useful for modeling uncertainty e.g. action of human driver or environment.

Aside. If we add probabilities to transitions then we get a Markov Chain (MC).
$D: Q \rightarrow \odot(Q)$
We can have both nondeterminism \& probabilistic uncertainty
\rightarrow Markov Decision Process

Deterministic automaton $\left|Q_{0}\right|=1$ and $\forall q \in Q, q_{1} q_{2} \in Q$ if $\left\langle q, q_{1}\right\rangle \in D$ and $\left\langle q_{1} q_{2}\right\rangle \in D$ then $q_{1}=q_{2}$

$\rightarrow q_{2}$
For deterministic automata $D: Q \rightarrow Q$ is a transition function.

Example 2

$$
\begin{aligned}
& Q=\mathbb{R}^{4} \\
& Q_{0}=\left\{x_{10}, v_{10}, x_{20}, v_{20} \quad\right\} \quad x_{20}>x_{10}>0 \\
& D \subseteq \mathbb{R}^{4} \times \mathbb{R}^{4}
\end{aligned}
$$

Often D will be described by a program or a physics model (differential equations)

If $x_{2}-x_{1}<d s$

$$
v_{1}:=\max \left(0, v_{1}-a_{b}\right)
$$

else $v_{i}=v_{1}$

$$
\begin{gathered}
x_{1}:=x_{1}+v_{1} \\
x_{2}:=x_{2}+v_{2}
\end{gathered}
$$

Do you see how this defines D ? Is it deterministic?

With some abuse of notation we can represent nondefer ministic models also as programs

$$
v_{1}:=\text { choose }\left[v_{1}-b_{1}, v_{1}-a_{1}\right]
$$

Fautly sensor
Executions. An execution is a particular behavior of the automaton A. $\alpha=q_{0} q_{1} q_{2} \ldots$. finite or infinite such that
(i) $q_{0} \in Q_{0}$
(ii) $\left(q_{i}, q_{i+1}\right) \in D \quad \forall i$

Nondeterministic automata have many executions.
A "Test" \approx one Execution

Requirements of a design
Examples? "Carl eventually catches up of C^{2} " "Carl and car 2 never collide" Safety
Requirement "Carl never goes backwards" "Car I does not neverceed speed limits"

These are safety requirements because we want A to always satisfy them.

We can express the safety requirements as
(1) A formula involving the state variables. e.g. $S_{1}:=\left|x_{1}-x_{2}\right| \geqslant 0.1$
(2) A subset of Q

$$
\llbracket S_{1} \rrbracket \subseteq Q=\mathbb{R}^{4}=\left\{\left\langle x_{1}, v_{1}, x_{2}, v_{2}\right\rangle \mid \widetilde{\left.x_{1}-x_{2} \mid \geqslant 0.1\right\}}\right.
$$

Safety Verification Problem
Does there exist any execution $\alpha=q_{0} \cdots q_{k}$ of A such that $q_{k} \& S^{c}$?

Such an execution is called a Counterexample
Def.
If for every finite execution $\alpha=q_{0} \cdots q_{k}$ of A and for every q_{i} in $\alpha, q_{i} \in S$ then we say A is safe w.r.t. S.

Reasoning about all executions
Def. For any set of states $R \subseteq Q$

$$
\operatorname{Post}(R):=\left\{q^{\prime} \in Q \mid \exists q \in R \text { and }\left\langle q, q^{\prime}\right\rangle \in D\right\}
$$

Exercise The Post () operator is monotonic if $R_{1} \subseteq R_{2}$ then $\operatorname{Post}\left(R_{1}\right) \subseteq \operatorname{Post}\left(R_{2}\right)$

Proof. Choose any $R_{1} \subseteq R_{2} \subseteq Q$
Choose any $x \in \operatorname{Post}\left(R_{1}\right)$
[we have to show $\left.x \in \operatorname{Post}\left(R_{2}\right)\right]$
By def of Post $\exists x_{0} \in R_{1} \quad\left\langle x_{0}, x\right\rangle \in D$
since $R_{1} \subseteq R_{2} \Rightarrow x_{0} \in R_{2}$

$$
\Rightarrow x \in \operatorname{Post}\left(R_{2}\right)
$$

We can apply Post recursively.
Def Post ${ }^{k}: 2^{Q} \rightarrow 2^{Q}$

$$
\begin{aligned}
& \operatorname{Post}^{\circ}(R)=R \quad R=0 \\
& \text { Post }^{k}(R)=\operatorname{Post}\left(\text { Post }^{R-1}(R)\right) \quad R>0
\end{aligned}
$$

Exercise $P_{\text {ort }}{ }^{k}\left(Q_{0}\right)$
is exactly the set f states that the automaton can reach offer executions of length k.

Proof.

Reachability analysis tools can
Compute or over approximate post ${ }^{k}$ () E.g. Verse, Space Ex, Flow ${ }^{*}$

In general Computing Post ${ }^{R}(R)$ can be hard (1) Q high dimensional
(2) D Complex,
(3) k large

Alternative Solution to safety verification Problem

Find an inductive invariant for proving safety of S.

Thu if there exists $I \subseteq \mathbb{Q}$ such that
(1) $Q_{0} \subseteq I$ (2) Post (I) $\subseteq I$

Then all executions of stay in I.
Further if $I \subseteq S$ then
Then A is safe w.r.t S.
Sufficient condition for proving safety

Requires us to find I existential not constructive not unique I necessarily

Proof. Consider any execution of A $\alpha=q_{0} q_{1} \cdots q_{k}$. We will prove by induction on k that $\forall i q_{i} \in I$.

Base case. $k=0 \quad \alpha=q_{0} \in Q_{0} \subseteq I$ by (1)

Inductive step. $\alpha=q_{0} \ldots q_{k-1} q_{k}$ and $q_{k-1} \in I$. We will show $q_{k} \in I$.
By (2) Post (I) $\subseteq I$
as $q_{k-1} \in I \Rightarrow q_{k} \in I$
Therefore $\forall i \quad q_{i} \in I$
Further if $I \subseteq S$ then $\forall i q_{i} \in S$

Simple invariant and Safety

$$
S_{1}:=v_{1} \geqslant 0
$$

How to prove that Carl never moves back?
$\begin{aligned} & \text { Choose } I_{1}=\llbracket S_{1} \rrbracket \text { This may not } \\ & \text { alwayo work }\end{aligned}$
Use inductive invariance theorem Does I_{1} meet the conditions (1)... (3)?
(1) $\forall q_{0} \in Q_{0}$
$q_{0} \cdot v_{10}>0$ [we assumed this]

$$
\Rightarrow q_{0} \in \mathbb{L} s_{1} \mathbb{}
$$

(2) Post (I): $:=\left\{q^{\prime} \mid q \in I\right.$ and $\left.\left(q, q^{\prime}\right) \in D\right\}$

For any state $q \in I$ if $q \cdot v_{1} \geqslant 0$ and $\left(q, q^{\prime}\right) \in D$ then we have to show that $q^{\prime} \cdot v$, is also $\geqslant 0$

How are q and q^{\prime} related by D ?
Note

$$
\begin{aligned}
& q^{\prime} \cdot v_{1}=\max \left(0, q \cdot v_{1}-a_{b}\right) \\
& \geqslant 0 \\
& q^{\prime} \in \llbracket S_{1} \rrbracket=I \\
& \text { Post }(I) \subseteq I
\end{aligned}
$$

It follows that S_{1} is indeed an invariant: Car 1 never goes backwards.

Another Safety requirement

$$
S_{2}: x_{1}<x_{2}
$$

Is S_{2} an inductive invariant?
(1) $Q_{0} \subseteq S_{2} \vee 0<x_{10}<x_{20}$
(2) Post $\left(S_{2}\right) \subseteq S_{2}$?

Not necessarily true if $q \cdot v_{1} \gg q \cdot x_{2}-q \cdot x_{1}$ then $q^{\prime} \cdot x_{1}$ may exceed $q^{\prime} \cdot x_{2}$

We cannot prove S_{2} we need to add or "discover" assumptions about $d_{s}, a_{b} \ldots$. to prove S_{2}.

Add more information in the model

$$
\text { timer: }=0
$$

If $x_{2}-x_{1}<d_{s}$ if $v_{1}>a_{b}$ then

$$
\left.\begin{array}{l}
v_{1}:=v_{1}-a_{b} \\
\text { timer }:=\text { timer }+1
\end{array}\right\} \text { (A) }
$$

else $v_{1}:=0$-(B)

$$
\begin{aligned}
& \text { else } v_{1}:=v_{1} \\
& x_{1}:=x_{1}+v_{1} \\
& x_{2}:=x_{2}+v_{2}
\end{aligned}
$$

I_{3}. timer $\leqslant \frac{v_{10}-v_{1}}{a_{b}}$
(1) $q_{0 . \text { timer }}=0 \leqslant \frac{v_{10}-v_{10}}{a_{6}} \leqslant 0$
(2) $q \in I_{3} \Rightarrow q^{\prime} \in I_{3}$

Three cases to consider
A. if $q \cdot x_{2}-q \cdot x_{1}<d_{s}$ and $q \cdot v_{1}>a_{b}$
then q^{\prime}.timer $=q \cdot$ timer +1

$$
\begin{aligned}
& \leqslant \frac{v_{10}-q \cdot v_{1}}{a_{b}}+1 \quad \text { [ind } \text { by p } \text {] } \\
& =\frac{v_{10}-\left(q^{\prime} \cdot v_{1}+a_{b}\right)}{a_{b}}+1 \\
& =\frac{v_{10}-q^{\prime} \cdot v_{1}}{a_{b}}
\end{aligned}
$$

B. if $q \cdot x_{2}-q \cdot x_{1}<d_{s}$ and $q \cdot v_{1} \leqslant a_{b}$

$$
\begin{aligned}
q^{\prime} \text {.timer } & =q \cdot \text { timer } \\
& \leqslant \frac{v_{10}-q \cdot v_{1}}{a_{b}}+1
\end{aligned}
$$

$$
\leqslant \frac{v_{10}+0 \quad u \operatorname{ses} v_{1} \geqslant 0}{a_{b}}+1
$$

C. if. $q \cdot x_{2}-q \cdot x_{1} \geqslant d_{s}$

$$
\begin{aligned}
q^{\prime} \cdot \text { timer } & =q \cdot \text { timer } \leqslant \frac{v_{10}-q \cdot v_{1}}{a_{b}}+1 \\
& \leqslant \frac{v_{10}-q^{\prime} \cdot v_{1}}{a_{b}}+1
\end{aligned}
$$

$I_{3}:$ timer $\leqslant \frac{v_{10}-v_{1}}{a_{b}}$ and $v_{1} \geqslant 0$

$$
\Rightarrow \text { timer } \leqslant \frac{v_{10}}{a_{b}}
$$

Still not enough to prove $x_{2}-x_{1}>0$
Max distance traversed by Carl after defection $\leqslant v_{10}$. timer $\leqslant \frac{v_{10}^{2}}{a_{b}}$
So, if $d_{s}>v_{10}^{2} / a_{b}$ and $v_{2} \geqslant 0$ then $I_{3} \Rightarrow S_{0}: x_{2}>x_{1}$

That is, if $d_{s}>v_{10}^{2} / a_{b}$ then in any execution $\& \&$ and all states $q_{1} \ldots q_{k}$ in $\alpha, \quad q_{i} \cdot x_{2}>q_{i} \cdot x_{1}$.

