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1 End-to-end safety

1.1 Data and models

How to check safety of an autonomous car? The natural approach for checking any
system, not just safety of autonomous cars, is through testing.

A single test for a system A runs the system and observes whether the resulting execu-
tion passes or fails some requirements. For an autonomous car, testing or generating an
execution means either test driving the car on the road or running the car’s software in a
simulation tool. Requirements here could be, for example, that the “car does not collide”
or “car does not run a stop signs”.

What we can and cannot learn from tests? If a test violates a requirement R, that
can give useful information. For example, it can pinpoint the road and traffic conditions
that led to the collision. It can also help identify the bug in the code or the design of the
software that needs to be fixed. Such a test or an execution of the system A is called a
counter-example for the requirement R.

While a finite set of tests can be used to show that a requirement is not satisfied, they
cannot prove that such a requirement R is satisfied for all executions ofA. This is because
A can have infinitely many executions, even if it is a finite state machine. Later on we will
see when and how finite number of tests can be used to say something statistical about the
safety ofA, but for now, let us train our eyes on absolute safety.

“Testing can be used to show the presence of bugs, but never to show their absence!”

— Edsger W. Dijkstra

Why bother with models? To learn or extrapolate about all—infinitely many—executions
of A form a finite sampling of executions, we need to make some assumptions about A.
A collection of these assumptions defines the model Â forA.
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In this class, we will learn about many different types of models and learn how finite
amount of data or tests can be used to make precise statements about safety of Â. We
will also learn how different components of an autonomous vehicle—vision, localization,
control, planning, decision making—are naturally described by wildly different types of
models. In this lecture, we will start with a simple but very powerful class of models called
automata, also known as discrete transition systems and state machines.

• A model Â forA can be proved to satisfy a given set of the requirements R. This
proof does not “prove” anything for A (because of the “model to reality gap”),
but it can serve as evidence, explanation, certificate, assurance case for the safety
ofA.

• The process of certification of Â invariably leads to more effective testing or usage
of execution data.

Going forward, when we are discussing a single model we will not distinguish between
the system A and its model Â. But, in using the results from a model, it is important to
mind this gap.

Roadmap
• A simple class of models: automata.
• What are executions of automata: sequence of states
• What are requirements?
• Reachable states, why we want to compute them, and why that can be hard
• Invariants as approximations of reachable states

1.2 Automata or state machines

Definition 1.1. A state machine A is defined by (1) a set of states Q, (2) a set of start
states Q0 ⊆ Q, and (2) a set of transitionsD ⊆ Q × Q.

Example 1.1 nice state machine example with brake, cruise, accel
Explicitly drawing the states and transitions can become unwieldy very quickly. So, we

will use programs to describe state machines. Actually, programs are state machines.

Example 1.2 [Collision avoidance in 1d] Consider two cars moving on a straight road
segment with initial positions x20 > x10 > 0, and velocities v10 > v20 ≥ 0. Car 1 has a
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sensor with range ds > 0 and it brakes with a deceleration ab > 0. Under what assumptions
on the model parameters can we show that there is no collision?

Let us proceed by first creating a (simple) model of this system. The important state
variables here are the positions and the velocities of the two cars x1, x2, v1, v2 ∈ R. Actually,
v2 never changes and we can make it into a constant parameter of the model instead of a
state variable. So, the state space Q for this automatonA is Q = R3. For any vector x ∈ Q,
we can stack the three state components to be in some fixed order, say x = ⟨x1, x2, v1⟩.
Notice the state space is uncountably infinite.

Next, the initial states Q0 ofA is defined simply as

Q0 := {x ∈ Q | x.x1 = x10, x.x2 = x20, x.v1 = v10}.

Here |Q0| = 1, but in general it need not be finite or countable.
Finally, the discrete transitionsD ⊆ Q × Q can be described by this program:

if x2 − x1 < ds

v1 := max(0, v1 − ab)
else v1 := v1

x2 := x2 + v2

x1 := x1 + v1

What this means is that the set of transitions is

D := {(x, x′) ∈ Q × Q | x′.x2 = x.x2 + x.v2 ∧ x′.x1 = x.x1 + x′.v1

(x.x2 − x.x1 < ds)⇒ (x′.v1 := max(0, x.v1 − ab))

(x.x2 − x.x1 ≥ ds)⇒ (x′.v1 := x.v1)}.

Now we have completely defined the automatonA for this example. By the way, although
this model is very simple, one-dimensional scenarios are commonly used for safety assur-
ance arguments for cars and even aircraft landing ISO (2011); Fabris (2012); Perry et al.
(2013).

Determinism An automaton A is deterministic if for every state x ∈ Q there is at most
one state x′ such that (x, x′) ∈ D is a transition. If A is not deterministic then it is nonde-
terministic.

The automaton in Example 1.2 is deterministic. Do you see why? For any state x the
unique next state can be written as x′ = f (x), were f the function in the code snippet shown
above. This is not that realistic.
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Exercise 1.1. Rewrite the code snippet to make the automaton in Example 1.2 nondeter-
ministic. For example, you can rewrite the assignment of v1 as to account for a range of
deceleration values.

v1 := choose [max(0, v1 − ab − ε),max(0, v1 − ab)]

How can we accommodate a sensor that sometimes fails? Or one that works only in
some range of relative velocities? A situation where Car 2 changes its velocity arbitrarily
from a range? For each of these cases, write the newD.

1.3 Executions of automata

An execution for an automatonA is a particular run of that automaton. Mathematically, an
execution is a (possibly infinite) sequence of states q0, q1, . . . , such that q0 ∈ Q0 is a start
state and (qi, qi+1) ∈ D is a valid transition ofA.

Exercise 1.2. Write out example executions of all the automata introduced earlier. Write
a program to plot all the four variables of the nondeterministic automaton in Exercise ??.

A deterministic automaton with a single initial state |Q0| = 1 has a “single execution”.
Technically, this is not exactly right because for any execution α = q0, q1, . . . , qk of A, its
prefix α′ = q0, q1, . . . , qk−1 is a also a distinct execution.

Given an execution α we may refer to the ith state in α as α[i] = qi.

Safety and requirements. At the beginning of this lecture, and throughout this course,
we use the term “safety” as a catch-all for requirements of the system. More precisely, a
requirement R for a systemA is a property that all executions ofA must meet or satisfy.

Example 1.3 Some examples of requirements written in English are:

• A car should never come within 0.5m of another car.
• A car should never exceed the speed-limit.
• A car entering an intersection should exit it within 20 seconds.
• A car should drive at least 28 miles per gallon (mpg) over any interval in its operating

life.

The first three are related to driving safety. The last one is about performance and environ-
mental impact. All are requirements of the system.

Once again, we will say that an automatonA (or a vehicle) meets a requirement R if all
its executions satisfies the requirement. The first requirement above for our example with
two cars can be written as:

∀ α,∀ k, α[k].x2 − α[k].x1 > 0.5.
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Notice the quantification over all executions α and over all states α[k] in α.

Perspective change. To reason about all executions from a finite set of executions
(or tests) we need to represent and manipulate sets of states and executions.

1.4 Reachable states, safety, and invariance

To discuss sets of executions, first let us define one step transitions for automaton A over
sets of states. For any set of states S ⊆ Q

Post(S ) := {x′ ∈ Q | ∃x ∈ S , (x, x′) ∈ D}.

Post function defines how a set of states S changes after every individual state in the set S
performs 1-step transition.

Exercise 1.3. (a) Write the Post function for the automaton in Example 1.2 as a logical
formula (as in the definition ofD).

(b) Write the Post function for the most general automaton you created in Exercise 1.1 as
a logical formula (as in the definition ofD).

Exercise 1.4. Show that Post() is a monotonic function. That is, if S 1 ⊆ S 2 then Post(S 1) ⊆
Post(S 2).

Thought experiment. For a deterministic automaton, given a single state x, computing
the next state generated byD is straight forward. Now that you have written a math formula
for Post, think about how you could compute Post({x}) for any single state x ∈ Q? How
would you compute Post(S ) for a set S ⊆ Q? Are you assuming a particular shape for S
and a particular representation? What if S is a complicated irregular set?

The above thought experiment should convince you that computing Post(S ) can become
difficult when the S , D are complex. Computing the set of all executions of length k
essentially involves computing Postk(Q0) which is inductively defined as:

Postk(S ) =

 S k = 0

Post(Postk−1(S )) k > 0
(1.1)

Exercise 1.5. Prove that for any automaton A = ⟨Q,Q0,D⟩ the set of states reached by
any execution at the end of k transitions equals Postk(Q0). Hint. (1) To prove equality of
sets A = B, you’d want to show A ⊆ B and B ⊆ A. (2) Try induction on the length of the
execution.

Reachable states. A state x ∈ Q is said to be reachable if it is the last state of any
execution. Equivalently, Postk(Q0) is the set of states reachable after k step. Why is this
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important? Well, if you wanted to check that the system is safe with respect to an unsafe
set U ⊆ Q (Starting from an initial set Q0) then all you would have to check is that all
reachable are not in U. That is,

∀ k ≥ 0,Postk(Q0) ∩ U = ∅.

In general, computing the set of all reachable states can be hard.

We will see this in more detail later. Informally, the transition relationD can be compli-
cated with lots of nondeterminism and computing Postk(·) large k may not terminate.

The trick we will see next can help bypassing the problem of computing Postk(·).

Invariance. The idea of invariant property or invariance is common in physics and com-
puter science. Any property or quantity related to a system that remains unchanged is an
invariant. For example, the total energy of a lossless system in an invariant. Conserved
quantities correspond to some invariant. The sum of the angles of a polygon is an invariant
under scaling and linear transformations. For an automaton A an invariant I is any set of
states that contains all the reachable states. This is useful because, if I ∩ U = ∅ then we
can infer safety ofA.

We now give a simple method for checking that a set of states I ⊆ Q is an invariant of an
automatonA.

Proposition 1.1. If we can find a set I ⊆ Q such that (i) Q0 ⊆ I and (ii) Post(I) ⊆ I,
then ∀ k, Postk(Q0) ⊆ I. That is, I is an invariant ofA.

Proof. We prove this by induction on k.
For k = 0 (base case) Post0(Q0) = Q0 [by Definition of Postk(·)]. And, Q0 ⊆ I [by (i)].

Therefore, Post0(Q0) ⊆ I.
For k > 0 (inductive step), we assume Postk(Q0) ⊆ I. By applying Post(·) to both sides

and using monotonicity of Post(·), we get Post(Postk(Q0)) ⊆ Post(I). That is Postk+1(Q0) ⊆
Post(I). Using (ii) it follows Postk+1(Q0) ⊆ I.

Proposition 1.1 implies that if we can somehow find a set (an invariant) satisfying
conditions (i) and (ii), then we do not have to compute Postk(·) and in addition if
I ∩ U = ∅ then we can happily conclude that the system is safe.
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Exercise 1.6. Let us return to Example 1.2 with the candidate invariant requirement: d :=
x2 − x1 > 0. Is this really an invariant? Can we prove this using Proposition 1.1? What
additional assumptions do we need?

Let us assume v20 = 0 for the rest of the discussion. It is easy to see that d := x2 − x1 > 0
is not an invariant. We have not said enough about the initial values of x10, x20, v10. What
if v10 is so large that in one step x1 becomes ≥ x2.

Now, let us take a different approach to find an inductive invariant. If we can upper-
bound the time that Car 1 spends after it detects Car 2, then we should be able to bound
the total distance it travels while braking. To do this, we introduce a timer into our model.

if x2 − x1 < ds

if v1 > ab

v1 := v1 − ab

timer := timer + 1
else v1 := 0

else v1 := v1

x1 := x1 + v1

Exercise 1.7. Show that the following is an invariant using Proposition 1.1:

I2 : timer + v1/ab ≤ v10/ab.

Invariant I2 is indeed an inductive invariant and it implies that timer ≤ v0/ab. This
implies that the total distance traveled by Car 1 after detection is at most v2

10/ab. Now
we see that if we assume that the sensing distance ds > v2

10/ab, then the in all executions
always x2 > x1. That is, in all reachable states there is no collision.

Identifying assumptions under which the system is guaranteed to work, is a key benefit
of (absolute) safety analysis. These assumptions can be used to define what are called
operating design domains (ODD).

Summary
• Absolute safety checking boils down to showing that none of the executions of

the automaton reach an unsafe set U.
• To reason about all executions ofA we have to work for infinite sets of states.
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• One way to compute infinite sets is using the Post operator. But, computing all
executions for unbounded time can be hard.

• If we can guess an invariant I ⊆ Q and if it satisfies the two conditions of Propo-
sition 1.1, (i) Q0 ⊆ I and (ii) Post(I) ⊆ I, then indeed all reachable states are
contained in I, i.e., Postk(Q0) ⊆ I. This give a shortcut for proving safety by
checking I ∩ U = ∅.

• The inavariant may contain important information about conserved quantities,
and thus, may tell us why the system is safe.

• If our guessed set I fails the two conditions, then we can try to modify it by adding
more information in it about other state variables.

1.5 Minding the gap

We conclude this module by discussing the gap—some of the assumptions in our models
that may break the safety analysis.

1. Perception.

(a) Sensor s detects the obstacle iff distance d ≤ Dsense. No false-positives, no false-
negatives, no probabilities. This is a very idealized model of a sensor. More realis-
tic sensor specifications will give distances and probabilities specific to detecting
particular objects like people, cars, bicycles; detection zone will be directional.

(b) Car 2 is known to be moving with constant velocity v0 = 0 from initial position
x20. This assumption was heavily used in the safety analysis, but it is not used
the vehicle’s automatic braking algorithm. What if the sensor can detect the speed
of Car 2, and applies an appropriate braking force? How will the safety analysis
change?

2. No sensing, computation, actuation delay. The time step in which d ≤ Dsense becomes
smaller is exactly when the velocity starts to decrease. What if there is a delay or a
reaction time?

3. Mechanics. Cars moving in 1-D lane with perfect discrete kinematic model for veloc-
ity and acceleration.

4. Inherent assumptions in any automaton model.

(a) Discrete time. Each transition ofA models advancement of time by some discrete
amount. You can think of 1 transition step = ∆ seconds. Then, x1(t + 1) = x1(t) +
v1(t)∆. Either way, we are not allowed to talk about what happens between [t, t+1].

(b) Atomic steps∗. We consider 1 step to be the complete (atomic) execution of the
program. We cannot directly talk about the states that the program visits as it
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executes the individual lines/statements in the code. This may become important
when considering many concurrent programs in the car, e.g., race conditions.
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2 Basic Perception: Edge Detection

Sensors convert electromagnetic radiation from the physical environment into bits. The
perception subsystem converts these bits into bits that hold meaningful information about
the environment. These bits are then used by the downstream decision and control modules
to generate the actuation, for example, steering and torque.

For example, consider a lane tracking control system as in autopilot. A front-facing cam-
era generates an image from the visible light reflecting off the road. The key meaningful
information in this image are the lanes, which are defined by edges of the lane markers. An
edge-detection algorithm can detect the lanes in that image. Using perspective transforms,
some geometry, and the focal length of the camera, a perception subsystem can estimate
the position and the orientation of the camera, and therefore the car, relative to the lanes.
The relative position and orientation can then be used to steer and center the car between
the lanes by a lane-tracking control system.

Roadmap
• Images and filters.
• Kernels and convolution for implementing filters
• Common kernels: Gaussian, Sobel, blur, etc.
• Edges, implementing edge detection with convolution

2.1 Filtering

An image is a two dimensional array of pixels. Here we will consider grayscale images.
For a grayscale image img, we will denote the (i, j)th pixel by img[i][ j]. For 8-bit images
img[i][ j] ∈ {0, 255}.

Filtering is an operation in which each pixel is modified as a function of its neighboring
pixels. Filtering is essential for denoising and enhancing details in images. Linear filters
are a special class where the function applied is linear.
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Example 2.1 Intensity scaling by k Int(k, Img): ∀i, j, img′[i][ j] = k × img[i][ j].
Shift(s, Img): ∀i, img′[i][ j] = img[i][ j − s], img′[i][0] = . . . = img′[i][s − 1] = 0.
Average over 3-neighborhood Avg(3, Img):

∀i, j, img′[i][ j] =
1
9

∑
k∈{i−1,i,i+1}
ℓ∈{ j−1, j, j, j+1}

img[k][ℓ]

Notice that this function can be conveniently written as a matrix multiplication:

∀i, j, img′[i][ j] =


1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

 .


img[i − 1][ j − 1] img[i − 1][ j] img[i − 1][ j + 1]

img[i][ j − 1] img[i][ j] img[i][ j + 1]

img[i + 1][ j − 1] img[i + 1][ j] img[i + 1][ j + 1]



The constant matrix


1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

 is called the kernel of this filter.

2.2 Convolution

The application of a linear function (kernel) to all the pixels can be compactly represented
by the convolution operation.

Definition 2.1. Let f be an image and g be a kernel. The output of convolving f with g is
denoted by f ∗ g,

( f ∗ g)[i][ j] =
∑
k,ℓ

f [i − k, j − ℓ]g[k, ℓ].

Figure 2.1
In image processing literature, the convention is to flip the convolution kernel.

For gaining intuition, we will often work with one-dimensional “images”. This can also
be useful for signals coming from range-finders. The output of convolving 1-dimensional
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f with g is
( f ∗ g)[i] =

∑
k

f [i − k]g[k].

2.2.1 Properties of convolution
The convolution operation has several nice properties.

Exercise 2.1. Show that convolution has the following properties. For simplicity, assume
1-dimensional kernels and images that extend to infinity img : [−∞,∞] → N. If some
parameters in the functions are missing, then show that the property holds for any choice
of those parameters.

(a) Shift invariance. Shift(Img) ∗ g = Shift(Img ∗ g)
(b) Linear. g ∗ (Img1 + Img2) = g ∗ Img1 + g ∗ Img2

(c) Commutative. g ∗ f = f ∗ g
(d) Associative. a ∗ (b ∗ c) = (a ∗ b) ∗ c
(e) Distributive. a ∗ (b + c) = (a ∗ b) + (a ∗ c)
(f) Identity. For unit impulse e = [. . . , 0, 0, 1, 0, 0, . . . ], a ∗ e = a

Proof. We provide a sample proof for (a). Without loss of generality, let the shift amount
be s:

Shift(Img)[i] = Img[i + s].

Therefore, we have:

(Shift(Img) ∗ g) [i] =
∑

k

Shift(Img)[i − k]g[k]

=
∑

k

Img[i + s − k]g[k]

= (Img ∗ g)[i + s]

= Shift(Img ∗ g)[i],

which completes the proof.

Any linear shift invariant operation can be written as a convolution.

2.2.2 Kernels
Exercise 2.2. Write some example kernels for blurring, sharpening, and shifting, for two
dimensional images.

The Gaussian kernel is defined by the 2-dimensional Gaussian probability distribution:

Gσ(x, y) =
1

2πσ2 e−
x2+y2

2σ2 ,
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where σ > 0 is the standard deviation of the distribution. As a rule of thumb, the filter
width is set as 3σ. The kernel is shown in Figure 2.2.

Figure 2.2
The 5×5 Gaussian kernel withσ = 1. Constant factor at front makes volume sum to 1 (can be ignored
when computing the filter values, as we should renormalize weights to sum to 1 in any case).

Exercise 2.3. Show that convolving a Gaussian kernel with another Gaussian, results in a
Gaussian. Show that convolving two times with Gaussian kernel with standard deviation
σ is same as convolving once with σ

√
2.

The 2D Gaussian filter can be written as the application of two 1D Gaussian filters be-
cause of the separability property of Gaussian.

Gσ(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2.1)

=

(
1
√

2πσ
e−

x2

2σ2

) (
1
√

2πσ
e−

y2

2σ2

)
(2.2)

This has an immediate efficiency implication. A 2D kernel
1 2 1

2 4 2

1 2 1

 =


1

2

1

 .
[

1 2 1
]

The complexity of convolving an n × n image with an m × m kernel is O(n2m2). For
separable kernels this becomes O(n2m).

Larger Gaussian filters (i.e., filters with larger σ) will reduce more noise, but they will
also blur features.

Median filter The median filter provides an alternative to the averaging and the Gaussian
filter: Median over 3-neighborhood Median(3, Img):

∀i, j, img′[i][ j] = Median(img[k][ℓ] | k ∈ {i − 1, i, i + 1}ℓ ∈ { j − 1, j, j, j + 1})
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Exercise 2.4. Is the median filter linear? If yes, write the kernel. If no, then show why not
with an example.

2.3 Edge detection

The goal of perception is to extract meaningful information about the environment, from
the bits generated by sensors. The “Edges” in an image carry most of the semantic infor-
mation and shape information in an image. E.g., Lanes, traffic signs, cars.

What is an edge? Edges are the lines along which there are sudden changes or dis-
continuities in an image. Edge detection is the problem of identifying sudden changes
(discontinuities) in an image. Edges in an image may correspond to sudden changes in
color, depth, surface normal, illumination, etc.

Figure 2.3
Lane detection from edges. Center image is the ∂ f

∂x and right image is ∂ f
∂y .

2.3.1 Derivatives of images
Speaking of discontinuities, we have the definition of 1-d derivative:

∂ f (x)
∂x

= lim
ε→0

f (x + ε) − f (x)
ε

For a 2d image f we can define (at least) two derivatives:

∂ f (x, y)
∂x

= lim
ε→0

f (x + ε, y) − f (x, y)
ε

≈
f (x + 1, y) − f (x, y)

1
(2.3)

∂ f (x, y)
∂y

= lim
ε→0

f (x, y + ε) − f (x, y)
ε

≈
f (x, y + 1) − f (x, y)

1
(2.4)
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How can we implement the approximate version of these derivatives using kernels and
convolution?

f ′ := gx ∗ f ,

where g = [−1 1]. Similarly, gy :=

 −1

1

 . There are other kernels that can compute other

derivatives. See for example, the Sobel Prewitt, and Roberts filters.

2.3.2 Gradient of an image
In general, the edges may not be perfectly aligned with the axes of an image and we would
be interested in the gradient which is defined as:

∇ f := [
∂ f (x, y)
∂x

∂ f (x, y)
∂y

]

The gradient points in the direction of most rapid increase in intensity. The gradient
direction is given by θ = tan−1( ∂ f

∂y /
∂ f
∂x ). The direction of the edge is normal to the direction

of the gradient. The edge strength is given by the gradient’s magnitude (norm): ||∇ f || =√
( ∂ f
∂x )2 + ( ∂ f

∂y )2

2.4 Differentiation and de-noising

In order to perform edge detection on a noisy image f , we would first want to apply a
Gaussian filter on f and then take the derivative of the result, i.e., compute d

dx ( f ∗ g).
Since differentiation is convolution, and convolution is associative, we can instead compute
f ∗ d

dx (g). This saves one filtering operation!

Canny Edge Detector The gradient gives a point-wise estimate of sharp changes in
intensity. How can we convert these point-wise estimates to curves? For each pixel location
q with the ||∇ f (q)|| above some threshold, check that the gradient magnitude is higher than
at neighbors p and r along the direction of the gradient. Sometimes pixels along an edge
may not survive this thresholding. Solution: use hysteresis. All of this together constitutes
a very well-known edge detection algorithm called the Canny edge detector Canny (1986).
With the OpenCV library you can use it as: canny(image,th1,th2).

Input image f
Compute ∂ f

∂x , ∂ f
∂y

Compute ||∇ f ||, orientation θ of ∇ f
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Thin out wide ‘‘ ridges′′ down to single pixel width
(Non-maximum suppression)
Define two thresholds on ||∇ f ||: s1 < s2

Use s2 to start and s1 to continue edges

Roadmap
• Convolution is a translation invariant linear operations on signals and images.
• Kernels for different filters: blur, sharpen, differentiation
• Median filter is not linear
• Gaussian kernel is separable which makes is efficient to implement.
• Edges contain important semantic information. Edge detection uses differentia-

tion, denoising—both implemented using convolution, and a few tricks.



MITPress NewMath.cls LATEX Book Style Size: 7x9 August 19, 2023 9:38pm



MITPress NewMath.cls LATEX Book Style Size: 7x9 August 19, 2023 9:38pm

3 Classification and object recognition

3.1 The classification problem

Image recognition is an example of a classification problem. Recognizing road signs,
pedestrians, lanes, traffic cones, from images can be seen as a classification problem. The
classification problem is the following.

Given a training set of N labeled examples T = {(x1, y1), . . . , (xN , yN)}, we would
like to learn a prediction function or the classifier f (x) = y. Such that the prediction
error on never-before-seen examples {(xs, ys)}s∈S , which is, eS =

∑
s | f (xs) − ys| is

small. The set over which the trained classifier f is evaluated is called the test set.

For each i, xi is the input and yi is the label or the output. For example, xi could be
a vector representing the features in an image (defined below), or it could be the whole
image, or a histogram of words appearing in a document. The yi is the label for that input
image, such as “car”, “pedestrian”, or “traffic cone”. For text documents, classification is
a building block for sentiment analysis and the labels could be e.g., “politics”, “sports”,
“music”. The training process typically proceeds by minimizing the error over the training
set

∑
i∈T |yi − f (xi)|. This is called the training error. Of course, making training error 0

(e.g., by making f memorize all the samples in the training set) may not be such a great
idea, because, then the classifier may fail miserably on the tests.

This type of classification is also called supervised learning as the training data set has
labels. .

Roadmap
• Representing high-dimensional vectors (images) with features
• Histogram of visual words
• Clustering (k-means algorithm); see Chapter 4
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• Classification (k-nearest neighbors)

3.1.1 Object recognition with image features
The “classical” (before deep neural networks became the de facto method) recognition
pipeline required hand-crafted features. That is, we will have a feature map ϕ : X →
Z which would map each high-dimensional image x ∈ X to a low-dimensional vector
ϕ(x) ∈ Z, then we would proceed with training of the classifier with the training set
{(ϕ(xi), yi)}i∈[N].

Examples of feature maps:

• Histogram of text words: Given a document x, the feature vector ϕ(x) is the histogram
of the most popular k words in the document

• “Textons” or Texture building blocks
• Histogram of visual words
• Scale-invariant feature transforms (SIFT) Lowe (1999)
• Histogram of gradients (HOG) Dalal and Triggs (2005)

Visual words To create a histogram as a feature vector for an image, we need to (a)
identify visual words and then (b) count the number of occurrences of these words. Both
of these steps present some challenges.

(a) How to identify interesting image patches that can serve as visual words?
(b) How can we count the number of occurrences of the visual words? No two oc-

currence is going to match exactly.

To address the first problem, we sample patches of the image based on characteristic
scale that are covariant with the image transformations. One possible way to do this is to
convolve the image with the blob filter (derivative) at different scales and to look for the
extrema of the filter response. This is the main idea behind SIFT Lowe (1999).

From all the images {xi} in in the entire training set T , extract all the image patches.
For example, for image xi the patches may be {pi1, pi2, . . . , piki }, and so on. We consider
each patch pi j is a vector in Rn, and then perform clustering on all of these patches (see
Chapter 4 for Clustering). The resulting cluster heads or centroids are used as the visual
words. . The collection of all the cluster heads define the visual vocabulary. Suppose
the resulting cluster heads, or visual words be p̂1, . . . , p̂k. The number of cluster heads (or
visual words) to be chosen in the vocabulary, is a design parameter and we shall return to
this later.
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Figure 3.1
Nearest neighbor classification. Credit: Andrej Karpathy, see more at this link.

Exercise 3.1. Explain in a few sentences how visual words are obtained from a collection
of images.

Quantization To address the second problem, of counting the number of occurrences of
visual works in an image xi, we have to quantize the image patches. That is, associate each
patch {pi1, pi2, . . . , piki } of image xi with the nearest cluster center (visual word) p̂ j. Then
we accumulate the visual word frequencies over the image for each p̂ j. This histograms of
visual words is the (lower-dimensional) feature vector ϕ(xi) corresponding to the image xi

and now we can apply classification on this vector.

3.2 K-Nearest neighbor classifier

Nearest neighbor is a simple classification method. For any new data x to be classified, we
simply look-up the set NK of the K nearest training data points of x; then output the label
y∗ is chosen as the one corresponding to the majority of the labels among the points in NK .
To find the K nearest neighbors, we have to choose a distance function (discussed below).
If we are using feature vectors, then, instead of computing distances on xi we have to do
so on ϕ(xi).

Require: T = {(xi, yi}
N
i=1 training set, K > 0, input data x, ϕ feature map, dist function

NK = mini∈[N] dist(ϕ(xi), ϕ(x),K)
for y ∈ T do

Cy := {xi | xi ∈ NK , (xi, y) ∈ T }
end for
y∗ := argmaxy|Cy|

output y∗

 http://cs231n.github.io/classification/
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Remarks (1) The different possible choices of distance functions were discussed in the
lecture. See slides.

(2) Components of the vector xi (or ϕ(xi)) with large values may influence the classifica-
tion more than others. To mitigate this problem, normalize vector: zi[ j] = xi[ j]−µ[ j]

σ[ j] , where
µ[ j] is the mean and σ[ j] is the standard deviation of z·[ j] across all input samples xi[ j]’s.

Exercise 3.2. What are some of the choices in the design of a classifier? (Hyperparame-
ters). For example, the number of visual words k, ... Discuss the effects of each of these
parameters on efficiency and precision.
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4 Clustering

4.1 Clustering problem

Clustering is a problem about discovering patterns in data. Specifically, given a data set
{x1, . . . , xN} clustering requires us to find how these points are organized in groups or clus-
ters. For example, clustering is used to build groups of genes with related expression
patterns; in the study of social networks, is used to recognize communities within large
groups of people.

Unlike the labeled training data we used in the classification problem of Chapter 3, here
the data set is unlabeled. Indeed, clustering is an unsupervised learning technique.

Clustering problem (informal). Given x1, . . . , xN ∈ Rn, and k > 1, partition the N
vectors into k groups such that the vectors in the same group are “close”.

Norms. To talk about closeness ofvectors in Rn we need some notion of distance. Dis-
tance between vectors is defined by norms. The choice of the norm or the distance function
will have a big impact on the shape of the clusters. Generally, a any function f : Rn → R≥0

satisfying these properties would be an acceptable norm:

• homogeneous: For any a ∈ R≥0, x ∈ Rn, f (ax) = a f (x)
• triangle inequality: For any x, y ∈ R, f (x + y) ≤ f (x) + f (y)
• definite: f (x) = 0 ⇐⇒ x = 0.

Exercise 4.1. Show that the following functions are norms: (a) f (x) := |x| =
∑k

i=1 |x[i]|;

(b) f (x) := ||x|| =
√∑k

i=1 x[i]2; (c) f (x) := |x|∞ = maxi |x[i]|. Here we are denoting the jth

component of the vector xi ∈ Rn as xi[ j]. That is, xi = (xi[1], . . . , xi[ j], . . . , xi[n]).

Given any norm on Rn, we can measure the distance between two vectors x1 and x2 ∈ Rn

as |x1 − x2|.

We setup some notation to discuss the clustering problem more precisely. Consider a
given set of points {x1, . . . , xN}, each xi ∈ Rn. Suppose we want to group these points into
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k clusters. If xi is assigned to some cluster j ∈ {1, . . . , k} then we will set the variable ci to
be j. That is, each ci, i ∈ {1, . . . ,N} is a variable that can take values in {1, . . . , k}. Let G j,
for j ∈ {1, . . . , k} be the set of xi’s in cluster j. That is,

G j = {xi | ci = j}.

Finally, let z j ∈ Rn, j ∈ {1, . . . , k} be a representative vector for cluster j. That is, zci is the
representative vector for the cluster that xi belongs to.

Clustering problem. Given x1, . . . , xN ∈ Rn, and k > 1, choose the cluster assign-
ments c1, . . . , cN for all the points and the representatives z1, . . . , zk, such that the fol-
lowing clustering cost is minimized:

Jclust(c, z) =
1
N

n∑
i=1

|xi − zci |
2

As you can see, clustering is an optimization problem over the choice of assigning N
vectors to k groups to minimize Jclust. There are kN choices and in the worst case. Further,
comparisons involving the points will involve computing norms which can be expensive
for high-dimensional vectors (with large n). Jclust is a non-convex function.

4.2 K-means clustering

We will discuss one of the simplest and most well-known clustering algorithms. This k-
means clustering algorithm uses the familiar Euclidean norm (2-norm).

Require: {xi}
N
i=1, k > 1

initialize z j, j ∈ [k] randomly
while Clusters do not change do

for i ∈ {1, . . .N} do
ci := argmin j∈[k]|xi − z j|

2

end for
for j ∈ {1, . . . k} do

G j := {xi | ci = j}
z j := 1

|G j |

∑
i∈G j

xi

end for
end while

This algorithm has an outer while-loop which keeps repeating until the clusters stop
changing. Inside this while loop there are two steps: (1) First, each xi is assigned to the
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Figure 4.1
K-means clustering.

nearest z j. That is, ci is set to the j that minimizes |xi − z j|
2. In step (2) the representative z j

is updated to be the centroid of the cluster j, i.e., the mean of all the xi’s assigned to j. To
see an online demo of k-means in action click here. Why do these two steps make sense?

It can be shown that in the inner-loop, k-means repeatedly minimizes Jclust with respect
to xi while holding z j fixed, and then minimizes Jclust with respect to z j while holding xi

assignments fixed. Thus, Jclust must monotonically decrease, and the value of Jclust must
converge.

Since Jclust is nonconvex, k-means can get stuck at a local minima. If you are worried
about getting stuck in a bad local minima, one common thing to do is run k-means many
times (using different random initial assignments for z j’s, and then pick the clustering that
gives the lowest distortion Jclust.

Exercise 4.2. Show an example where k-means terminates at a local minima. That is, (a)
give/draw a set of points (small set N ≤ 5, low dimension n ≤ 2); (b) give the clustering
ci, z j; (c) show that k-means terminates with this clustering and the corresponding cost
Jclust. (d) Then show the globally minimal clustering and the corresponding cost J∗clust.

Expand on this discussion

Exercise 4.3. Implement KNN-classification on different datasets, different values of K.
Share the code with us using co-lab.

Summary
• What is the clustering problem
• k-means algorithm as coordinate decent
• Termination, local minima

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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5 Control

5.1 The control problem

In this chapter, we will study the control module, which sits between higher-level decisions
(e.g., change lanes, slow down) and the lower-level control and actuation (e.g., steering
and throttle). Control theory is the art of making things do what you want them to do.
In this class, each of these words have a specific meaning. Art describes the creation of
parameterized controllers or algorithms and ways of tuning them. By things we mean
phenomena that can be represented using differential equations. And, we want them to
follow some desired behavior, track some set-point, or follow a reference trajectory.

Figure 5.1
Control in the autonomy pipeline.

Examples of control systems:

• Thermostat-heating system: the temperature is kept within a desirable range, despite
the changes in occupancy and weather conditions.

• A toilet flush: water-level maintained after use.
• Cruise control: The car maintains a set reference speed, despite changes in slope, road

conditions.
• Autosteer: The car steers to track the center of the lane markings.
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Figure 5.2
Many applications of control theory.

Roadmap
• Modeling the control problem using Differential Equations

- Solutions and their properties
• Control design

- Open vs. closed loop control
- PID control design
- State feedback

• Requirements
- Stability
- Lyapunov theory and its relation to invariance

5.2 Differential Equation Models

A control system can be modeled using two components: a plant and a controller. The
plant is the thing or physical process being controlled, and the controller is the algorithm or
the piece of software doing the controlling (Figure 5.3). Here, x ∈ Rn is the n-dimensional
state vector, u ∈ Rm is the control input, and f : Rn × Rm → Rn is the function describing
how the state evolves with control input. We write xt, ut, etc. to denote the state and control
at time t ∈ N.

xt+1 = f (xt, ut).

The control u is typically computed as a function of the state, ut = g(xt), in which case, the
closed loop system is written as

xt+1 = f (xt, g(xt)).

The continuous time version of this model is written using ordinary differential equations
(ODE):

ẋ(t) = f (x(t), u(t)), or (5.1)

ẋ(t) = f ′(x(t)) (5.2)
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Figure 5.3
A discrete time model of a control system.

Here ẋ is a shorthand for dx(t)
dt , i.e., the derivative of the signal x(t) taken with respect to

time t.
Equation (5.2) combines f and g into a new function f ′ : Rn → Rn which does not have

the dependence on inputs. Such ODEs are called autonomous system1.
A solution to the ordinary differential Equation (5.2), is a any function x : R→ Rn such

that:
dx(t)

dt
= f (x(t)).

For this definition of solution to make sense, the function x should be differentiable with
respect to time.

If the control input u(t) is not continuous, then the solution x(t) will not be differen-
tiable (at the points of discontinuity). See Figure 5.4. We have to be careful about the
definition of solution.

When do solutions exist? Are the solutions unique? The above discussion tells us that
we have to be careful about existence and uniqueness of solutions of ODEs if we are to use
them as the basis for discussing control design.

Example 5.1 (Pendulum) Consider the equations describing the motion of a pendulum
with mass m and length l. There are two state variables, the angular position θ and the
angular velocity θ̇ (see Figure 5.5). Let us name the state variables x1 = θ, x2 = θ̇; then the

1 This term should not be confused with autonomous as in autonomous cars. Here autonomous just means that
the model has no external inputs.
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Figure 5.4
The position, velocity, and acceleration of a point moving from point A to B. Since the acceleration
is not continuous, the velocity is not differentiable.
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Figure 5.5
A pendulum with angular position θ and length l (left). Trajectories of the pendulum and two equi-
librium points (right)

ODE describing the system is the following:
˙ x1

x2

 =
 x2

g
l sin(x1) − k

m x2

 (5.3)

Here g is the acceleration due to gravity, and k is a coefficient of friction and air-
resistance. Check that the RHS of the ODE is Lipschitz continuous (Definition 5.1). How
do we find out the states where the pendulum does not move? We simply set the RHS to 0,
which gives us x1 = 0, π, 2π, . . ., and x2 = 0. These are the equilibria of the system.
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Example 5.2 (Bicycle model) Consider the kinematic vehicle model of a car with length
ℓ. For the state variables, we have the car’s position and orientation p = (x, y, θ) ∈ R3. For
simplicity, we consider the longitudinal speed v to be constant. The control input u is the
steering angle which is denoted by δ. Then, we can describe the first time derivative for
each of the components of p using the inputs, as described below:

p =


x

y

θ


ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v
l

tan δ

You can read more about vehicle models for autonomous driving and their derivations
from this excellent survey article Paden et al. (2016).

Example 5.3 Consider the 1-dimensional ODE:

ẋ = x2

with initial state x(0) = 1. Check by taking derivatives that the following function of time

x(t) =
1

1 − t
is a solution. However, notice that as t → 1, x(t) → ∞. Therefore, the solution blows-up
and cannot be extended beyond t = 1.

Example 5.4 Consider ẋ =
√

x. Again, chec that both

x(t) =
t2

4
and x(t) = 0

are solutions of this ODE. That is, the model does not have a unique solution even from
the same starting state.

How can we impose conditions on f such that a unique solution always exists? This is
where the notion of Lipschitz continuity becomes useful.

Definition 5.1. A function f : Rn → Rn is Lipschitz continuous if ∃L > 0 such that
for any pair x, x′ ∈ Rn,

|| f (x) − f (x′)|| ≤ L||x − x′||.
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Figure 5.6
The slopes of the black lines marking the red areas are L and −L. A function is Lipschitz continuous
with L if it lies inside the cones defined by L at the neighborhood of every point.

Exercise 5.1. (a) Show that the functions 6x + 4; |x| are Lipschitz continuous. (b) Show
that all differentiable functions with bounded derivatives are also Lipschitz. Note that a
function does not necessarily have to be differentiable to be Lipschitz (as seen in the case
of |x|). (c) Show that

√
x and x2 are not Lipschitz continuous.

Theorem 5.1. If f (·) is Lipschitz continuous, then ẋ = f (x(t)) has unique solutions.

Definition 5.2. Given an ODE ẋ = f (x), a state x∗ ∈ Rn at which f (x∗) = 0 is called
an equilibria of the ODE.

Model-reality gap As in automata models of Chapter 1, the model-reality gap exists
for ODEs as well. More detailed models add complexity and could make the model less
tractable. Less accurate models will represent reality more coarsely, and therefore, the
inferences drawn may lead to false positivies in testing and verification and more conser-
vative design.

In this class we will often focus on linear ODEs of the form:

ẋ(t) = f (x(t), u(t)) = A(t)x(t) + B(t)u(t). (5.4)

Any linear function f can be represented in this form, where A(t) ∈ Rn×n and B(t) ∈ Rm×n

are matrices with entries which can be functions of time t. This is called a Linear Time-
Varying system (LTV). If A(t) and B(t) are independent of time, we call that a Linear
Time-Invariant system (LTI).
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Figure 5.7
The open loop control model.

Figure 5.8
The feedback or closed-loop control model.

5.3 Control Design

How would we design a control system? A simple strategy to consider is known as open
loop control: given an input reference (or target) position x∗, the control input u(t) is
calculated simply as a function g of x∗ and time t.

This approach does not use the state of the plant x(t) to determine what the controller has
to do. So, the controller does not respond to the state or the environment.

Exercise 5.2. (a) Name some examples of household appliances where open loop control
is used. What is the state x, the reference x∗ and what function do you think is used to
compute the control signal? (b) Where would open-loop control work fine and in what
situations do you think it would fail?

5.3.1 PID control
A way to incorporate the state of the plant is to include a feedback mechanism. Feedback
control, also known as closed-loop control, can be described as follows: Here, we incor-
porate the difference between the reference x∗ and the current output x(t) from the plant
through an error term, for example u(t) = g(e(t)) where the error e(t) = x∗ − x(t). More
generally, the actual plant state x(t) may not be available, and we have to work with some
output y(t) = s(x(t)) that is generated by a sensor s(·). More on this and the role of state
estimation in Chapter 6.
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Figure 5.9
A model where a sensor is used for proportion control.

One example is where a car driving down a lane on the road. If the car is very close to
the left edge of the lane, we would want a considerable turn in the right direction. If the
car is slightly to the left, we would want to move just a little bit to the right. Here the error
is the deviation of the car’s position x(t) from the center of the lane x∗.

This motivates the incorporation of proportional control, where we can include a pro-
portional gain term as so: u(t) = g(x∗, x(t)) = KP(x∗ − x(t)). This is also known as error
feedback control, and to show this in our model, we add a sensor, as seen in Figure 5.9.

There are more ways to fine-tune the function g:

• g not only depends on the error but also the rate of change of error (derivative)
• g also depends on the history of the error (integral)

This gives the general form of the PID controller:

u(t) = KPe(t) + KI

∫ t

0
e(τ)dτ + KD

de(t)
dt

= KP[e(t) +
1
TI

∫ t

0
e(τ)dτ + TD

de(t)
dt

] (5.5)

Example 5.5 Consider a simple 1-dimensional system in which the state (say, velocity) y(t)
is directly controlled by the controller input (say, acceleration) u(t) plus some disturbance
d(t). That is,

ẏ(t) = u(t) + d(t).
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Suppose the goal is to track a target speed y∗. We can consider the error signal e(t) =
y(t) − y∗ and use this as negative feedback. That is, we define

u(t) = −KPe(t) = −KP(y(t) − y∗)

ẏ(t) = −KP(y(t) − y∗) + d(t),

where KP is the design parameter called proportional gain. Now, suppose that in the
steady-state the disturbance signal becomes constant, d(t) = dss. What is the corresponding
steady state output? We use the usual method of setting the RHS of the ODE to 0 and
solving for y(t). We get

yss = y(t) =
dss

KP
+ y∗.

Note that increasing the proportional gain KP value makes the error value smaller. Can we
make it arbitrarily large? What about the transient behavior of this function? Rewriting the
ODE in terms of yss we get: ẏ(t) = −KPy(t) + yss. Being an ODE of the form ẋ = −ax + b,
we know the form of the solution:

y(t) = y(0)e−
t
T + yss(1 − e−

t
T ),

where the time constant T = 1/KP. At t = 0, y(t) = y(0) and as t → ∞ y(t) = yss, and the
system converges to yss faster with a smaller KP.

We can reduce the steady-state errors (by increasing Kp but this also increases the
amplitude of the control signal u(t) and the RHS of y(y). If Kp is very large this
may lead to responses that are too quick leading to oscillations and instability. This
illustrates one of many trade-off in choosing the PID gains; there are others.

5.3.2 Path following controller
Recall the bicycle model for our vehicle: we represent the direction that the vehicle is
moving by using a single wheel at the center of the model. The state of the model can
be defined by a vector pB(t) = [xB, yB, θB, vb] ∈ R4. Now, consider a target (reference)
position p∗ defined by a higher-level planner.

The error function is now a vector: e(t) = [δs(t), δn(t), δθ(t), δv(t)]. The first two terms
are known as the along track and cross-track errors, respectively.

Along track error is the distance ahead or behind the target p∗ at any instantaneous
direction of motion at time t:

δs = (x∗(t) − xB(t)) cos θB(t) + (y∗(t) − yB(t)) sin θB(t)

The cross-track error is orthogonal to the intended direction of motion:

δn = −(x∗(t) − xB(t)) sin θB(t) + (y∗(t) − yB(t)) cos θB(t).
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Figure 5.10
A model of our path following system. Note the various sources of error introduced for a more
complex model. a(t) is throttle and δ(t) is steering.

The heading error and velocity error are defined as follows: δθ = θ∗(t) − θB(t) δv =
v∗(t) − vB(t). A variant of the path follower controller is the pure pursuit controller, which
performs proportion-differential PD-control to correct against the along-track and cross-
track error terms:

u(t) = K



δs

δn

δθ

δv


[where K =

Ks 0 0 Kv

0 Kn Kθ 0

]

5.4 State-feedback control design

State feedback control is another control design technique. The idea here is to design the
control u(t) = g(x(t)) signal as a full function of the state. Notice that for a state variable
x1 its higher derivatives ẋ1, ẍ1, etc. can always be included as part of the state vector x for
the purpose of control design.

Often the system we study will model the “error” relative to some target, for instance, it
could be the difference between the current speed and the target speed in a cruise control
system, or the difference between the current position and the target waypoint in a path
tracking control system. We would like the error to go to 0 as t → ∞, that is, ∀x(0) ∈
Rn, limt→∞ x(t) = 0.
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5.4.1 Linear state feedback control

Consider a linear time invariant (LTI) system: ẋ = Ax, x ∈ Rn, A ∈ Rn×n, and the
initial state x(0) ∈ Rn. The solution of this LTI system is given by:

x(t) = x(0)eAt (5.6)

For discrete time model x(t + 1) = Ax(t) the solution is x(t) = At x(0).

Review the definition of the matrix exponential eAt appearing in Equation (5.6). If this
linear system models how the error evolves, and we would like the error to go to 0 as
t → ∞.

∀x(0) ∈ Rn, lim
t→∞

x(t) = lim
t→∞

x(0)eAt ?
= 0 (5.7)

Theorem 5.2. An LTI system ẋ = Ax is asymptotically stable iff all eigenvalues of A
have strictly negative real parts. Such matrices are called Hurwitz.

Exercise 5.3. Visit this this website. Explore different matrices, observe how the stability
of the trajectories is related to the eigenvalues.

Exercise 5.4. Consider a two-dimensional system with two states x (national income) and
y (rate of consumer spending) and another variable g (rate of government expenditure) such
that g is a function of the state x. Let the states x and y and g be defined as follows,

ẋ = x − αy (5.8)

ẏ = β(x − y − g) (5.9)

g = g0 + kx (5.10)

Applying g into ẏ will yield ẏ = β[(1− k)x− y− g0]. (a) What are equilibrium point of this
linear system? (b) Can perform a linear coordinate transform so that in the new coordinate
system the equilibrium point is at the origin? (c) Write a program to simulate the system
with different values of g0, k, etc., with different initial conditions.

Vector fields ODEs can be viewed as vector fields. Simply plot (ẋ, ẏ) as a vector at (x, y)
and this vector shows how the point is forced to move under the field defined by the ODE
(see Figure 5.11 as an example).

For a given point, the trajectory can be drawn as a curve as it travels along the defined
vector field. For Figure 5.11, you can see that the curve does not end at a given point. It
just loops back onto itself. This means that, for the given point that was picked to start
from, the system does not stabilize. The values of x and y oscillate.

https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/
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Figure 5.11
Left: Lyapunov stable (but not asymptotically stable) trajectory in phase plane. Right: time plot of
the same trajectory.

5.4.2 Eigenvalues and eigenvectors
Recall x ∈ Rn and λ are eigenvalues and eigenvectors of A if Ax = λx. In other words,
(A − λI)x = 0. The eigenvalues of the linear system is then determined by solving the
characteristic equation det(λI − A) = 0. The question then becomes, how can this be used
for control design?

Suppose there is a plant that is a linear system and a controller set in a configuration
shown in Figure 5.12 that is defined as

ẋ = Ax + Bu (5.11)

u = −Kx (5.12)

u can be substituted into ẋ which would yield

ẋ = (A − BK)x (5.13)

Let’s define a matrix A′ = (A − Bk). This means that we can choose some matrix for K
(gain matrix) to make A′ is Hurwitz.

Figure 5.12
Plant and controller for a linear system



MITPress NewMath.cls LATEX Book Style Size: 7x9 August 19, 2023 9:38pm

Control 39

Example 5.6 Given the previous model of the path tracking problem, a linearized model
of the system is given by 

δ̇s

δ̇n

δ̇θ

 =

0 0 0

0 0 v

0 0 0



δs

δn

δθ

 +

1 0

0 0

0 1


δvδk

 (5.14)

ẋ = Ax + Bu (5.15)

Applying state feedback control will define u = KBx and this results in:

δvδk
 =

Ks 0 0

0 Kn Kθ



δs

δn

δθ

 (5.16)

Substituted into the right hand side of the above equation yields ẋ = (A − BK)x, where

A − BK =


0 0 0

0 0 v

0 0 0

 −

Ks 0 0

0 0 0

0 Kn Kθ

 = −

Ks 0 0

0 0 −v

0 Kn Kθ

 (5.17)

K can then be determined such that the matrix A − BK is Hurwitz by solving for K in
the characteristic equation det(A − BK − λI). Calculating the determinant of the matrix
A − BK − λI results in a polynomial in λ in terms of the values within K (Kθ,Kn,Kw). In
order to make the matrix Hurwitz, the real parts of the roots of this polynomial has to be
negative, so we choose values for Kθ, Kn, and Kw such that the real parts of the roots are
negative.

Example 5.7 Given some plant that is a linear function ẋ = Ax + Bu in which x ∈ R2,
choose a controller u = −Kx that is some linear function of the state.

The closed loop system is then given to be

ẋ = Ax − BKx = (A − BK)x (5.18)

Let A′ = A − BK, we want to choose K such that A′ is Hurwitz.

Suppose A =

0 v

1 1
2

, B =
[
0 1

]
, and −K = −

K11 0

0 K22

.
A − BK =

0 v

1 1
2

 −
0 0

0 K22

 =
0 v

1 1
2 − K22
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λI − (A − BK) =

 λ −v

−1 λ − 1
2 + K22

 (5.19)

The characteristic equation of the matrix λI−(A−BK) is obtained by setting the determinant
to 0.

det(λI − (A − BK)) = 0 (5.20)

λ2 + λ(K22 −
1
2

) − v = 0 (5.21)

Solving this equation for the roots yield

λ1, λ2 =
−(K22 −

1
2 ) ±

√
(K22 −

1
2 )2 + 4v

2
(5.22)

In order to make the matrix A′ Hurwitz, the real components of roots of the characteristic
equation have to be negative. This means that Re(λ1) < 0 and Re(λ2) < 0.

This creates two cases in to make A′ be Hurwitz.

1. If (K22 −
1
2 )2 + 4v < 0, then the real component of the root is defined by −(K22−

1
2 )

2 . This
means that K22 must be greater than 1

2 in order for the real component to be negative.
2. Otherwise (K22 −

1
2 )2 + 4v ≥ 0. The real component of the root is defined by the entire

root. This means that (K22 −
1
2 )2 + 4v < (K22 −

1
2 )2 or v < 0 in order for the entire root

to be negative.

Summary so far
• PID control

Detailed models are not necessary
Heuristics are used for tuning parameters

• State-feedback control
Uses a linearized model
Algorithm for finding parameters (gain matrix) using the Hurwitz condition

5.5 Requirements for control systems: Stability

What are the typical performance requirements of a control system?

• Convergence to an equilibrium. The system under study often models the error (see
previous section), relative to some reference point or trajectory. The convergence to
equilibrium then corresponds to tracking the reference point.
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• State variables stay bounded; this is related to invariance (how?)
• Bounded-input, bounded-output (BIBO) stability (not covered)

Convergence to an equilibrium set point is the main objective of any control system and
can be implemented as driving the system to zero as mentioned above. In a continuous
state space, we would like our system to exhibit some type of bounded behavior. This is
important to be able to guarantee anything about the system, in regards to both safety and
general proper functionality of the system. In previous chapters, we describe invariance
and defined an invariant set I to be any set of states that contains all the reachable states.
More formally, for any possible choice of the initial state of the system, and for all time,
the state of the system stays within some nice set I:

∀ x(0) ∈ θ,∀t, x(t) ∈ Iθ

By proving some ground truths about the behavior of our system, we can make the as-
sumptions that are necessary to bridge the gap between model and reality. BIBO stability,
in short, is the property of a system where the output of the system is proportional to its
inputs. In other words, a small disturbance to the system will not result in unbounded
behavior.

For the purpose of discussion and in accordance with some of the plots to come, let’s
consider the origin 0⃗ ∈ R2 as an equilibrium (i.e. f (0⃗) = 0). Previous sections describe the
conditions that must hold for asymptotically stability (to be defined). Let’s consider the
non-linear system where

ẋ = f (x)

5.5.1 Lyapunov stability
Russian mathematician and physicist Aleksandr M. Lyapunov defines stability of ordinary
differential equations (ODEs). In the theory of probability, he generalized the works of
Chebyshev and Markov, and proved the Central Limit Theorem under more general condi-
tions that his predecessors.

For the next definition we use the following notation. A ball of radius r > 0 centered at
x ∈ Rn, is defined as the set Br,x := {x′ ∈ Rn | |x − x′| ≤ r}. For balls centered around the
origin x = 0, we write in brief Br instead of Br,0.

Definition 5.3. (Lyapunov stability) The system ẋ = f (x) is stable (Lyapunov stable)
if

∀ϵ > 0,∃δϵ > 0 such that ifx(0) ∈ Bδ then ∀t ≥ 0, x(t) ∈ Bϵ .

Otherwise the system is unstable.
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Figure 5.13
Shown are a pair of δε and ε balls in definition of Lyapunov stability. The orange trajectory starts
within the δε-ball and never leaves the ε-ball.

Notice that each δϵ may depend on the corresponding ϵ.

How is this notion of stability related to invariants and reachable states?

According to this definition of stability, for any ϵ > 0, if the system starts anywhere
inside the x(0) ∈ Bδϵ , x(t) may evolve outside of the Bδϵ , but x(t) will always remain Bϵ .
This captures the idea that the states in a stable system do not “blow up”. We can think
of the Bϵ as an invariant set, provided that the initial state x(0) ∈ Bδϵ . Thus, Lyapunov
stability is strong property; it gives a whole family of Bϵ-balls as invariants (provided the
system starts from a small enough δ-ball).

5.5.2 Asymptotic stability

Definition 5.4. (Asymptotic Stability) The system is (globally) asymptotically stable
if it is Lyapunov stable and limt→∞ x(t) = 0.

Asymptotic stability is by definition a stronger notion that Lyapunov stability. See Figure ??

Exercise 5.5. What can we say about the stability/asymptotic stability of the following
systems?
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Figure 5.14
Left: Trajectory eventually converges to the origin. Right: Trajectory does not converge to zero, but
also does not blow up.

5.5.3 Invariance & stability verification
In Chapter 1, we used the following method to prove invariants of a system. This is a
restatement of Proposition 1.1: I ⊂ Rn is an invariant if:

x(0) ∈ I and f (I) ⊆ I.
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That is, a set I is an invariant set if (i) any initial state is in I, and (ii) for any state in I,
the function f ( that models our system) applied to that state results in a state that is also in
I. We will see a similar one-step method for proving stability and asymptotic stability of
nonlinear models ẋ = f (x).

First let’s build some intuition by asking a slightly different question. Given any initial
state of the system, can we determine whether the system will reach the equilibrium or
not? How do we prove that a program or an automaton terminates?
Intuition: Suppose there something about the system, let’s call it “energy”, that has some
sort of a lower bound that cannot drop below some floor, and in every step of the program,
this “energy” decreases. If we can come up with such an energy function, the can show
that the system always goes down to the zero-energy states.

To make that mathematically precise, we define the ranking function.

Ranking function: R : X → N

∀x,R ( f (x)) < R(x)

For any state, the rank of a function f applied to that state is strictly less than the
rank of the state. Note that the range of the function being over all natural numbers
∀x,R(x) ≥ 0.

Coming up with the ranking function is not straightforward but if we were able to come
up with this ranking function, we could show that program terminates.

More generally, we ask if we could allow for a more general ranking R : X → R? The
answer is yes, and the solution lies among differential equations and their solutions given
by the Lyapunov function.

Theorem 5.3. Suppose their exists a positive definite, radially unbounded continuous
function V : Rn → R≥0 such that

1. if V̇ ≤ 0, then the system is Lyapunov stable.
2. if ∀x , 0 and V̇ < 0, then the system is asymptotically stable.

What is V̇ ? It might seem odd that V is a function of state and yet, we are taking
derivative of V w.r.t. time. What is going on here? V̇ = ∂V(x(t))

∂t . Using the chain rule of
differentiation, we can write V̇ as ∂v

∂x ·
∂x(t)
∂t =

∂v
∂x f (x). The last step is using the fact that x(t)

is a solution of the ODE ẋ = f (x(t)) and replcing ∂x(t)
∂t with f (x).

Notice that Theorem 5.3 does not require us to solve the differential equations and yet
we get to prove the strong property of (asymptotic) stability.
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Example 5.8 Consider the nonlinear system described by

ẋ = −x + y2

ẏ = −2y + 3x2

and the corresponding Lyapunov function

V(x, y) =
x2

2
+

y2

4
. (5.23)

Clearly V is positive definite and radially unbounded. Now calculate

V̇(x, y) =
∂V
∂x

fx(x, y) +
∂V
∂y

fy(x, y)

= x(−x + y2) + y/2(−2y + 3x2)

= −x2 + xy2 − y2 +
3
2

yx2

= −x2(1 −
3
2

y) − y2(1 − x),

which is negative for all x, y satisfying x < 1 and y < 2/3. This indicates that the origin is
(locally) asymptotically stable.

We relate the idea of idea of a trajectory being contained within a certain ball to the idea
of a Lyapunov function via level sets.

Definition 5.5. For any function f : Rn → R and an a ∈ R, the a-level set of f is the
set

La = {x ∈ Rn | f (x) = a}.

The a-sublevel set of f is the set

S a = {x ∈ Rn | f (x) ≤ a}.

Corollary 5.4. Consider a nonlinear system ẋ = f (x) with an initial set of states
Θ ⊆ Rn. Suppose V : Rn → R≥0 is a Lyapunov function. Then for any a ≥ 0, with the
sub-level set S a containing Θ, S a is an invariant of the system.

Exercise 5.6. Prove Corollary 5.4.

Finding a Lyapunov function may be challenging in general. For stable linear systems,
there is always a quadratic Lyapunov function. Moreover, such a quadratic Lyapunov
function can always be computed by solving what is called Lyapunov equations, which



MITPress NewMath.cls LATEX Book Style Size: 7x9 August 19, 2023 9:38pm

46 Chapter 5

is a linear matrix inequality. For nonlinear systems, one typically guesses the form of the
Lyapunov function then solves an optimization problem to make V̇ negative. Once we have
found a Lyapunov function, it give us (asymptotic) stability and a whole family of sublevel
sets which are candidate invariants.

Summary
• Stability Requirements
• Lyapunov stability and asymptotic stability
• Lyapunov method for proving stability
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6 State estimation and localization

The notes in this chapter heavily borrow from Thrun et al. (2005).

6.1 The state estimation problem (informal)

Recall from Chapter 5 that a closed-loop control system can be represented as:

x(t + 1) = f (x(t), u(t))

u(t) = g(x(t))

In that chapter, we assumed that the complete and accurate state x(t) is available to the
controller g at all times. In real autonomous system, the complete state information may
not be available. For example, the speed of the car may be available from a vehicle wheel
speed sensor, but the absolute position and heading angles may not be available. This leads
to the state estimation problem: How do we find x(t)? Usually we have observations or
measurements of some quantities related to x(t), say, z(t) = h(x(t)), from which we would
like to infer the actual state x(t) or the relevant parts of state. The estimated state is usually
denoted by x̂(t). Localization is a special case of estimation where we determine the pose
of a robot relative to the given map of the environment.

6.1.1 Different types of localization
There are many different approaches we can take to the localization problem:
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Problem
approaches:

Global Localization Problem Local Localization Problem

The initial position is unknown The initial position is known; the un-
certainty in this problem comes from
motion

Type of
environment:

Static Environment Dynamic Environment

All obstacles in the environment are
stationary

obstacles in the environment can move

Number of
robots:

Single robot Multiple robots

Control
Approach:

Passive Approach Active Approach

The localization module does not in-
fluence control input ut

The localization module can influence
ut to gain more information about the
environment

6.1.2 Setup
The discrete time model we will use is as follows:

xt = f (xt−1, ut) + wt

zt = g(xt,m) (6.1)

where xt is the state at time t (which may not be fully observable), ut is the control input
for time t, wt represents noise, and zt is the observed measurement of the state xt at time t.

In this chapter, we will work with sequences of states, inputs, and observations, and for
that we introduce the following notations. For any two time points t2 > t1:

• xt1:t2 is the sequence of states xt1 , xt1+1, . . . , xt2−1, xt2 .

• ut1:t2 = ut1 , . . . , ut2

• zt1:t2 is defined similarly.

We will review basic concepts in probability before stating the estimation problem pre-
cisely.

6.1.3 Review of probability
Random variables are written using capital letters X,Y,Z, etc. The values that a random
variable X can take are written as x1, x2, etc. P(X = xi) is the probability that X takes
the value xi. For example, if X is the integer-valued random variable modeling the result
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of pair of dice rolls, then we would write P(X = 12) = 1
36 . The notation is extended to

multiple random variables: P(X = xi,Y = y j) is the probability that X = xi and Y = yi. We
will write P(xi, y j) as an abbreviation for P(X = xi,Y = y j), when the random variables
X,Y are clear from context.

The probability that X = xi given that Y = y j is called conditional probability, and is
written as P(X = xi|Y = y j) or as P(xi|y j) in brief. Conditional probability is defined as

P(xi|y j) =
P(xi, y j)

P(y j)
,

provided where P(y j) > 0. Therefore, P(xi, y j) = P(xi|y j)P(y j) = P(y j|xi)P(xi). After
substitution (and dropping the indices), we get:

Bayes Rule.
P(x|y) =

P(y|x)P(x)
P(y)

Here P(x) is called the prior distribution over x, the conditional probability P(x|y) is
called posterior distribution, and P(y|x) is called the inverse conditional distribution. Of-
ten the denominator P(y), which is independent of x, is not that important. This is be-
cause, we’d want P(x|y) to be a probability distribution over x and therefore the quantity
P(y|x)P(x) is normalized. In terms of the state estimation problem, we are interested in the
posterior distribution of x given the measurement z, that is P(x | z), starting from the prior
knowledge P(x).

Exercise 6.1. Show the following

P(x | y, z) =
P(y | x, z)P(x | z)

P(y | z)
,where P(z) > 0 (6.2)

Exercise 6.2. Show the following fact which is called the law of total probability.

P(x) = ΣyP(x | y)P(y). (6.3)

6.2 Estimation problem (formal)

Let X0, X1, X2, . . . be a sequence of random variables representing the states of the system
at t = 0, 1, 2, . . . . That is, X0 = x0, X1 = x1, X2 = x2, . . . represents a particular trajectory
of the discrete time system of Equation (6.1). Similarly, let U1,U2, . . . be the random
variables representing the control inputs, and let Z1,Z2, . . . be the random variables for the
measurements. The state estimation problem is to estimate the state Xt at time t, given the
history of the previous states, inputs, and measurements. Thus, the problem is to compute
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or estimate the following probability distribution:

P(Xt = xt | X0 = x0, . . . , Xt−1 = xt−1,U1 = u1, . . . ,Ut = ut

Z1 = z1, . . . ,Zt−1 = zt−1) (6.4)

Which we write in brief as:

P(xt | x0:t−1, u1:t, z1:t−1). (6.5)

To solve this problem, we will use probabilistic versions of the system model described in
Equation 6.1.

We assume that the state is complete, that is, it is a sufficient summary of all that hap-
pened in previous time steps. That is, xt−1 has all the relevant information from the previous
states, controls, and measurements to define the next state with the given input u. This can
be written as

P(xt | x0:t−1, u1:t, z1:t−1) = P(xt | xt−1, ut).

This is called the Markovian property and this distribution P is called the generative
model of state evolution. In the extreme case of a purely deterministic system, P(xt =

f (xt−1, ut) | xt, ut) = 1.
The second model we need is related to the measurement function g. We assume that the

measurement model is complete with respect to the state. That is, P(zt | x0:t, u1:t, z0:t−1) =
P(zt | xt).

The final notion we need to introduce is the notion of belief.

Definition 6.1. The belief at a given time t is the posterior distribution over state, given all
the past measurements and control inputs. Belief at time t is denoted by

bel(xt) = P(xt | z1:t, u1:t). (6.6)

6.3 Bayes filter

Applying Equation (6.2) to the definition of bel(xt) (with x = xt, y = zt, z = z1:t−1; u1:t), we
get:

bel(xt) =
P(zt | xt, z1:t−1, u1:t)P(xt | z1:t−1, u1:t)

P(zt | z1:t−1, u1:t)
= ηP(zt | xt, z1:t−1, u1:t)P(xt | z1:t−1, u1:t)

= ηP(zt | xt)P(xt | z1:t−1, u1:t) [Using completeness of measurement]

bel(xt) = P(zt | xt)bel(xt) (6.7)

The distribution over the state bel(xt) is very similar to bel(xt) except that it does not use
the most recent measurement zt. Now we expand the definition of bel(xt) using the law of
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totla probability:

bel(xt) = P(xt | z1:t−1, u1:t)

=
∑
xt−1

P(xt | xt−1, z1:t−1, u1:t)P(xt−1 | z1:t−1, u1:t)

=
∑
xt−1

P(xt | xt−1, ut)P(xt−1 | z1:t−1, u1:t) [Using Markov state transitions]

bel(xt) =
∑
xt−1

P(xt | xt−1, ut)P(xt−1 | z1:t−1, u1:t−1) [Assuming ut randomly]

bel(xt) =
∑
xt−1

P(xt | xt−1, ut)bel(xt−1) (6.8)

This derivation is the basis for the Bayes filtering algorithm which is presented below:

1: Bayes filter(bel(xt−1), ut, zt):
2:

3: for xt do
4: bel(xt) =

∫
P(xt | xt−1, ut) bel(xt−1)dxt−1

5: bel(xt) = ηP(zt | xt) bel(xt)
6: end for
7: return bel(xt)

The Bayes filter algorithm takes as input the belief at time t − 1, the control input
ut at time t, and the observed state zt at time t, and returns the belief at time t. Since bel(xt)
is a distribution over xt, for a discrete state system, the algorithm computes the probability
bel(xt) for each state. Line 4 implements a continuous version of Equation (6.8), which
updates the belief based on the control input ut. This is called the prediction step, because
it uses the motion model P(xt | xt−1, ut). Line 5 implements Equation (6.7), which updates
the belief based on the measurement zt. This is called the correction step, and it uses the
measurement model P(zt | xt).

Exercise 6.3 (From Thurn). A robot uses a range sensor that can measure ranges from 0m
to 3m. For simplicity, assume that actual ranges are distributed uniformly in this interval.
Unfortunately, the sensor may be faulty When the sensor is faulty, it consistently outputs
a range below 1m, regardless of the actual output range in the sensor’s measurement cone.
We know that the prior probability for a sensor to be faulty is p = 0.01.

Suppose the robot queries its sensor N times and every time the measurement value is
below 1m. What is the posterior probability of a sensor fault for N = 1, 2, ..., 10. Formulate
the corresponding probabilistic model.
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6.4 Histogram filter

The histogram filter is a finite state version of the Bayes filter where the random variable
Xt can take finitely many values x1, . . . , xk. Examples include occupancy grids.

This algorithm essentially represents the beliefs by histograms {pk,t}, and replaces the
integral with a sum.

1: Histogram filter({pk,t−1}, ut, zt):
2:

3: for k do
4: p̄k,t =

∑
i P(Xt = xk | Xt−1 = xi, ut)pi,t−1

5: pk,t = ηP(zt | Xt = xk) pk,t

6: end for
7: return {pk,t}

6.5 Particle filter

The particle filter is a powerful filtering algorithm which uses the same underlying prin-
ciples of the Bayes filter, but represents the beliefs in a completely different way. In a
particle filter, the beliefs bel(xt) are represented by a finite number of particles or samples
of the state. This representation brings a few advantages:

• The representation is non-parametric, and therefore, can represent a broader set of
distributions. The Kalman filter, in contrast, relies heavily on Gaussian distributions
represented by their means and variances.

• Particle filters can handle nonlinear transformations of the distributions. For example,
the operations needed for the prediction and correction stages of the filter.

• Particle filters scale to higher-dimensional models than grid/histogram filter because
the entire state space does not have to be discretized.

Before giving the concrete algorithm, let’s first define the key notion of particles more
precisely.

Definition 6.2. Samples of bel(xt) distribution are called particles. We denote M par-
ticles by the set Xt = {x

[1]
t , x

[2]
t , . . . , x

[M]
t }, where each x[m]

t ∈ Rn for an n-dimensional
real-valued state space.

Example 6.1 For the rear wheel vehicle model, x[m]
t = ⟨posx, posy, θ⟩ and typically using

M ≈ 100 particles will be adequate.
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In representing bel(xt) with Xt, ideally, the x[m]
t should be included in Xt with probability

proportional to bel(xt) = P(xz| · · · ). This will hold asymptotically as M → ∞. The particle
filtering algorithm is shown below.

Require: Xt−1, ut, zt

Xt = {x
[1]
t , . . . , x

[M]
t } particles

X̄t−1 = Xt = ∅

for all m in [M] do
sample x[m]

t ∼ p(xt |ut, x
[m]
t−1) // sampling from motion model

w[m]
t = p(zt |x

[m]
t ) // calculates importance factor wt or weight

X̂t = X̂t + ⟨x
[m]
t ,w

[m]
t ⟩ // intermediate weighted particles.

end for
for all m in [M] do

draw m with probability ∝ w[m]
t // importance sampling based on weights

add x[m]
t to Xt

end for
Return Xt

Importance sampling The key new idea in the particle filter is importance sampling
which is implemented in the second for loop. Suppose we want to compute E f [I(x ∈ A)]
but we can only sample from density g(·). For reasons that will become clear, we will have
to assume that for any x, f (x) > 0 =⇒ g(x) > 0. We can write E f [I(x ∈ A)] as follows:

E f [I(x ∈ A)] =
∫

f (x)I(x ∈ A) dx

=

∫
f (x)
g(x)

g(x)I(x ∈ A) dx

=

∫
w(x)g(x)I(x ∈ A) dx

= Eg[w(x)I(x ∈ A)]

The multiplication and division in step 2 is allowed only if the above assumption holds.
The fraction f (x)

g(x) is precisely the weight w(x) associated with the value (particle) x which
accounts for the mismatch between f and g. Importance sampling utilizes this transforma-
tion.
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Figure 6.1
Importance Sampling Figure from Thrun et al. (2005).

The resampling step in the particle filtering algorithm, is a special case of importance
sampling: we want to sample from bel(xt), but we can only sample from bel(xt), and
therefore, the weighting trick is used.

6.5.1 Monte-Carlo Localization
The Monte Carlo Localization (MCL) algorithm is a direct applicaiton of particle filtering
to the robot localization problem. Given a map of the environment, this algorithm estimates
the location and orientation by plugging in motion and measurement models in the particle
filter.

Require: Xt−1, ut, zt, m
Xt = {x

[1]
t , . . . , x

[M]
t } particles

X̄t−1 = Xt = ∅

for all m in [M] do
sample x[m]

t = sample motion model(ut, x
[m]
t−1)

w[m]
t = sample measurement model(zt, x

[m]
t )

X̂t = X̂t + ⟨x
[m]
t ,w

[m]
t ⟩

end for
for all m in [M] do

draw i with probability ∝ w[t]
t

add x[i]
t to Xt

end for
Return Xt
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Although the pipeline we described so far is able to track the pose of a mobile robot and
to globally localize the robot, mitigating localization errors/failures (like the kidnapped
robot problem) remains a problem, which is particularly serious when the number of
particles is small. To further address this problem, we can randomly insert samples ac-
cording to localization performance. We can monitor the probability of sensor measure-
ments p(zt |z1:t−1, u1:t,m). Concretely, for particle filters, such probability is approximately
1
M

∑M
i=1 wt. Through inserting random samples proportional to the average likelihood of

the particles, the robot will be teleported with higher probability when the likelihood of its
observations drops.

Summary
• Particle filters are an implementation of recursive Bayesian filtering
• They represent the posterior by a set of weighted samples.
• In the context of localization, the particles are propagated according to the motion

model.
• They are then weighted according to the likelihood of the observations.
• In a re-sampling step, new particles are drawn with a probability proportional to

the likelihood of the observation.

6.6 SLAM Overview

6.6.1 Problem statement
Rest of this Chapter is not yet reviewed. In the localization problems we have dealt with
so far, we are always assuming that the map is known. On the other hand, Simultaneous
Localization and Mapping (SLAM) is task of building a map while estimating the pose
of the robot relative to this map. SLAM is particular hard because it is a chicken-egg
problem: a map is needed to localize the robot but a pose estimate is needed to build a
map. More concretely, imagine a robot moving though an unknown, static environment,
given knowledge about the robot’s controls and its observations of nearby features, we
need a map of features and a path of the robot.

SLAM problem also have different formulations depending on the available state/history
and continuous/discrete correspondence variables.

• State / history

– Online SLAM: Estimates most recent pose and map p(xt,m|z1:t, u1:t)

Given control inputs (u), measurements(z), and white nodes to be determined
(x,m), we want to calculate p(xt,m|z1:t, u1:t).

– Full SLAM: Estimates entire path and map p(x1:t,m|z1:t, u1:t)
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Given control inputs (u), measurements(z), and white nodes to be determined
(x,m), we want to calculate p(x1:t,m|z1:t, u1:t).

• Continuous or discrete correspondence variables: p(xt,mt, ct |z1:t, u1:t) xt and m are
continuous while the relationship of detected objects to new objects are discrete.

In reality, SLAM is a hard problem for the following reasons.

• In the real world, the mapping between observations and landmarks is unknown.
• Picking wrong data associations can have catastrophic consequences.
• Pose error correlates data associations.

6.6.2 Data Association Problem
Definition 6.3. A data association is an assignment of observations to landmarks.

In general, there are more than
(

n
m

)
possible associations where n is the number of ob-

servations and m is the number of landmarks. Although particle filter could technically
be used to solve SLAM, the number of particles needed to represent a posterior grows ex-
ponentially with the dimension of the state space! Therefore, a naı̈ve implementation of
particle filters to SLAM will be crushed by the curse of dimensionality.

However, we use the dependency between the dimensions of the state space to solve
the problem more efficiently. Concretely, in the context of SLAM, the map depends on
the poses of the robot while know how to build a map given the position of the sensor is
known. To further illustrate this point, we need to recall some tools from statistics.

Definition 6.4. Random variables A and B are conditionally independent given C if

P(A ∩ B|C) = P(A|C) · P(B|C).

For example, height and vocabulary are not independent, but they are conditionally in-
dependent given age.

By utilizing conditional independence, we can factor the SLAM posterior into a robot
path posterior and a conditionally independent landmark position posterior: the knowledge
of the robot’s true path renders landmark positions conditionally independent.

p(x1:t, l1:t |z1:t, u0:t−1) = p(x1:t |z1:t, u0:t−1)·p(l1:t |z1:t, x1:t) = p(x1:t |z1:t, u0:t−1)·
M∏

i=1

p(li|z1:t, x1:t).

This factorization is also called Rao-Blackwellization. Given that the second term can be
computed efficiently, particle filtering becomes possible!
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Figure 6.2
Mapping using Landmarks

Enabled by Rao-Blackwellization, FastSLAM algorithm was developed, where each
landmark is represented by a 2x2 Extended Kalman Filter (EKF) and each particle there-
fore has to maintain M EKFs. As a result, FastSLAM achieved O(N · log(M)) overall
complexity where N is the number of particles and M is the number of map features.

Figure 6.3
FastSLAM

Now, let’s come back to the data association problem we defined previously with our
efficient SLAM particle filter in mind. A robust SLAM must consider possible data associ-
ations while potential data associations depend also on the pose of the robot. With efficient
particle filters, we can tackle the data association problem on a per-particle basis where
robot pose error is factored out of data association decisions. Concretely, there are two
options for per-particle data association: we can pick the most probable match or we can
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pick an random association weighted by the observation likelihoods. If the probability is
too low, we will generate a new landmark.

FastSLAM

• Maintain set of particles

– Each particle contains s sampled robot path and a map

– Each feature in the map represented by local Gaussian

– Result linear is size of map and number of particles

• Trick is to represent map as a set of separate Gaussians instead of a giant joint
distribution, which is possible because of conditional independence given a path

• In the context of localization, the particles are propagated according to the motion
model.

• Update rule similar to conventional particle filter
• Each particle can be based on a different data association
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7.1 The planning problem

This chapter will cover the concepts of search and planning. There are many different
motivations and levels of navigation that search and planning are used at, from global path
planners to compute routes (i.e. Dijkstra’s), to figuring out how to navigate areas such as
parking lots (variation of A*). We can begin to address the planning problem through using
an e.g. four dimensional (using x position, y position, heading θ , direction dir) discrete
uniform grid, but this path may not actually be realistic for vehicle dynamics to perform.
We can smooth this discrete path to make it more feasible to traverse, which we will cover
later in this chapter.

Roadmap
• Performance Metrics
• Deterministic Search and planning

– Uniform-Cost Search

– Greedy (Best-First) Search

– A search

– A* Search

– Hybrid A* Search

• Sampling-based planning

– Probabilistic Roadmaps (PRMs)

– Rapidly-expanding Random Trees (RRT)

– Rapidly-expanding Random Graphs (RRG)
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Before any specifics, consider the shortest path problem. It takes in an input of ⟨V, E,w, start, goal⟩,
and outputs a path (sequence of vertices v ∈ V) ⟨P⟩. V is a finite set of vertices, E ⊆ V × V
is a finite set of the edges, w is a function that gives a positive weight to each edge e, and
both of {start, goal} ∈ V . The objective is for w(P) to be minimal.

Exercise 7.1: What is the minimum path from s to g in figure 7.1?

Figure 7.1
Small sample graph

7.2 Performance Metrics

When evaluating a search and planning algorithm, there are a few criterion that we can use
to describe its behavior and performance.

• Soundness
• Completeness
• Optimality
• Space complexity
• Time complexity

Soundness asks the question ”Is the solution that is returned guaranteed to be correct?”.
Completeness means that if there is a solution to be found, the search algorithm will find
that solution. Optimality revolves around whether the solution that is found is the best
solution to the problem. Space and time complexity discusses the amount of memory
needed and how fast does the algorithm run respectively.
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7.3 Deterministic Search

A deterministic search algorithm is simply an algorithm that if you run it multiple times on
the same data set, each time the same solution will be returned.

7.3.1 Uniform Cost Search
Properties

• Complete
• Optimal
• Time complexity: O(bW∗/ϵ), W∗ is optimal cost, ϵ is is a value that no edge weights are

less than
• Space complexity: O(bW∗/ϵ)

Uniform Cost Search (UCS) is a deterministic search algorithm that effectively is like BFS,
but for actions (read: edges) that have different costs or weights. Something to note about
UCS is that it does not store a list of nodes that it has already visited. UCS is generally
implemented with a priority queue, by which the item with (in this case) the smallest cost
will be placed at the front of the priority queue. UCS will expand the current shortest path
(the path at the head of the queue), and has no bias towards the goal. Psuedocode for UCS
is below:

1: Q← ⟨start⟩
2: while Q , ∅ do
3: from Q, pick the path P with the lowest cost g = w(P)
4: if head(P) = goal then
5: return P
6: end if
7: for each vertex v such that (head(P), v) ∈ E do
8: add ⟨v, P⟩ to Q
9: end for

10: end while
11: return Fail

Exercise 7.2: Recall figure 7.1. Running UCS on this graph will give us a path P =
⟨g, d, a, s⟩ with cost = 8. Verifying this claim is left as an exercise to the reader.

We can realize that UCS is both complete and optimal, as it will always find the shortest
path and will not miss any (like BFS).

Exercise 7.3: Prove that UCS is both complete and optimal.
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Downsides of UCS include that due to its nature of expanding the current shortest path,
in a graph where there are many vertices each connected by a small cost edge, UCS will
expand this long string of short edges, only to find out in the end that there is a shorter way
to get to the goal.

What if we were able to avoid this? What if we were to have some sort of magic function
that tells us not to expand all of those short edges?

7.3.2 Best-first or Greedy Search
Properties

• Not complete
• Not optimal
• Time and Space complexity: O(bm), m

Greedy or Best-First Search uses the concept of a heuristic h. This function provides an
estimate of the distance to the goal, such as by using Manhattan or Euclidean distance ob-
jectives. A greedy search algorithm works by expanding the path with the lowest heuristic
cost first. Greedy Search is similar to DFS in that it keeps exploring until it has to go back
due to a dead-end.

Psuedocode for Greedy Search is below:

1: Q← ⟨start⟩
2: while Q , ∅ do
3: from Q, pick the path P with the lowest heuristic cost h(head(P))
4: if head(P) = goal then
5: return P
6: end if
7: for each vertex v such that (head(P), v) ∈ E do
8: add ⟨v, P⟩ to Q
9: end for

10: end while
11: return Fail

Exercise7.4: Guided work-through of greedy search algorithm on figure 7.2:
Start

Path Cost Heuristic

⟨s⟩ 0 10
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Figure 7.2
Simple graph, now with heuristic

Adding neighbors and removing ⟨s⟩:
Path Cost Heuristic

⟨a, s⟩ 2 2

⟨b, s⟩ 5 3
Adding neighbors and removing ⟨a, s⟩:
Path Cost Heuristic

⟨c, a, s⟩ 4 1

⟨b, s⟩ 5 3

⟨d, a, s⟩ 6 4
Adding neighbors and removing ⟨c, a, s⟩:

Path Cost Heuristic

⟨b, s⟩ 5 3

⟨d, a, s⟩ 6 4

⟨d, c, a, s⟩ 7 4
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Adding neighbors and removing ⟨b, s⟩:
Path Cost Heuristic

⟨g, b, s⟩ 10 0

⟨d, a, s⟩ 6 4

⟨d, c, a, s⟩ 7 4
And now we are done, with returning the path ⟨g, b, s⟩. Notice that while this is a valid

path, it is not the right path for the shortest path from s to g.
Therefore, although greedy search can be quite fast, it is not complete nor optimal.

Exercise7.4: Create an example where greedy search gets stuck

7.3.3 A & A* search (and heuristics)
7.3.3.1 A search A search is different from both greedy and uniform cost search in
that it keeps track of both the cost of the path so far g(v), as well as the heuristic (AKA:
estimate of cost to go) h(v). From these two functions, we form an path cost estimation
f (v) = g(v) + h(v).

1: Q← ⟨start, goal, h,V, E,w⟩
2: while Q , ∅ do
3: from Q, pick the path P with the lowest estimated cost f (P), where the cost

f (P) = g(P) + h(head(P))
4: if head(P) = goal then
5: return P
6: end if
7: for each vertex v such that (head(P), v) ∈ E do
8: add ⟨v, P⟩ to Q
9: end for

10: end while
11: return Fail

Exercise7.4: Guided work-through of A search algorithm on figure 7.3:
Start

Path g h f

⟨s⟩ 0 10 10
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Figure 7.3
Simple graph, now with heuristic

Adding neighbors and removing ⟨s⟩:
Path g h f

⟨a, s⟩ 2 2 4

⟨b, s⟩ 5 3 8
Adding neighbors and removing ⟨a, s⟩
Path g h f

⟨c, a, s⟩ 4 1 5

⟨b, s⟩ 5 3 8

⟨c, a, s⟩ 6 5 11
Adding neighbors and removing ⟨c, a, s⟩

Path g h f

⟨b, s⟩ 5 3 8

⟨c, a, s⟩ 6 5 11

⟨d, c, a, s⟩ 7 5 12
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Adding neighbors and removing ⟨b, s⟩
Path g h f

⟨g, b, s⟩ 10 0 10

⟨c, a, s⟩ 6 5 11

⟨d, c, a, s⟩ 7 5 12

And now we are done. So, A search is complete, but is the path ⟨g, b, s⟩ optimal? No it
is not. Why? Remember, that if h(v) = 0, then A search is effectively the same as UCS.
Look at the heuristic at vertex d in figure 7.3.
The heuristic estimates a cost of 5, whereas the true cost is 2. This leads into the concept
of heuristic admissibility.

7.3.3.2 A∗ search Let us define a h∗(v) as the exact cost remaining to go. Then, we want
our heuristic function h(v) ≤ h∗(v). In other words, the heuristic should not overestimate
the actual remaining cost. If a heuristic h(v) satisfies this condition, it is said to be admis-
sible. If a heuristic is admissible, A search becomes A∗ search, and is now guaranteed to
be optimal.

Suppose we change the heuristic of vertex s to 6 and the of vertex d to 1 in figure 7.3.
What do you notice now? The heuristic is now admissible.
Exercise 7.6: Prove the optimality of A∗.

What are examples of admissible heuristic functions? h(v) = 0 is an admissible heuris-
tic, but this particular heuristic changes A∗ into UCS. We can do better. Better examples
could be h(v) = distance(v, g), where the vertices are physical locations is an admissible
heuristic, as well as is the h(v) = ||v − g||p in a normed vector space. Exercise 7.7: What is
another example of an admissible heuristic? An inadmissible heuristic?

7.3.3.3 A word on heuristics We have already discussed admissibility in the previous
section, particularly that an admissible heuristic will not overestimate the true remaining
cost to the goal.
Partial order of heuristics:

We say that a heuristic h1 is dominated by another heuristic h2 if ∀v ∈ V , h1(v) < h2(v).
The heuristic h∗ dominates all admissible heuristics, and the 0 heuristic is dominated by
all admissible heuristics. As a general rule, we want to chose a heuristic h such that is as
close as possible to h∗.
Consistency:

A heuristic h is consistent if ∀edges (u, v) ∈ E, for some vertices u and v, h(u) ≤ h(v) +
w(u, v). It follows that the total path cost estimation function f (v) ≥ f (u).
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7.3.4 Hybrid A*
At the beginning of this chapter we alluded to a way to ”smooth” a discrete path in order
to make it more feasible for the dynamics of a vehicle to traverse, as in figure 7.5. This is
the idea of A∗ search. Read the paper by Sebastian Thurn, et. al on hybrid A* here.

Figure 7.4
A* to D* to Hybrid A*

A∗ search associates a cost with a cell center. However, this result sin a discrete planned
path. D∗ goes a step farther and allows for linear paths between cells by associating a cost
with cell corners, instead of cell centers. Finally, hybrid A∗ associates a continuous state
with each cell.

Lets bring back our 4-D coordinate state space that we mentioned in the first section,
⟨x, y, θ, dir⟩. As seen in figure 7.5, the current state is associated with cell ci. Upon a

Figure 7.5
hybrid A*

control input u, the resulting state is ⟨x′, y′, θ′, dir′⟩ in c j. While Hybrid A∗ will always
give a realizable path, it is not complete. A coarser discretization makes hybrid A∗ more
likely to fail.

http://robots.stanford.edu/papers/junior08.pdf
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7.4 Sampling-based Planning - Non-deterministic Planning

A sample-based planner has solutions that are based on samples from a distribution. They
can have probabilistic completeness, can work with general dynamics, and don’t have ex-
plicit constraints.

7.4.1 The Motion Planning Problem
The motion planning problem gets our vehicle from some point A to another point B whilst
avoiding obstacles. These sampling- based algorithms also incorporate the dynamical con-
straints of the vehicle. Consider a standard ODE

dx
dt
= f (x, u), x(0) = xinit

which represents a control system, where x is a state and u is the control input. With an
obstacle set Xobs and goal set Xgoal (both ⊂ Rd), the goal is to find a u such that

• ∀t ∈ R≥0, x(t) < Xobs

• for some finite T ≥ 0, ∀t > T, x(t) ∈ Xgoal, 0
• Fail if there is no u that exists.

There are many types of planners. Discretization and graph search planners, such as the
search algorithms we have already discussed, are not easily scale-able to higher dimen-
sions. Algebraic planners provides an explicit representation of obstacles, and is complete,
but not practical in most case. Potential fields / navigation functions have attractive forces
toward the goal and repulsive forces away from obstacles. These do not have a com-
pleteness guarantee unless there are navigation functions involved. High computational
difficulty.

7.4.2 Probabilistic Road Maps (PRM)
Properties

• Multi-query
• Probabilistic Completeness
• Not asymptotically optimal
• Complexity for N samples Θ(N2). Can be faster with e.g. k-Nearest Neighbor.

PRM is a multi query algorithm - meaning that it can find a path from any point to any
other point. PRM is split up into a reprocessing and a run time phase. In the prepossessing
phase, we build a graph by sampling n points from the free space X f ree = [0, 1]dXobs

(basically anywhere in the space that isn’t inside an obstacle). Check out this animation of
the prepossessing phase on Wikipedia.

The psuedocode for a simple PRM construction:

https://en.wikipedia.org/wiki/Probabilistic_roadmap
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1: V ← {xinit} ∪ {SampleFree}i=1...N−1

2: E ← ∅
3: for each vertex v ∈ V do
4: U ← Near(G = (V, E), v, r) \ {v}
5: for each vertex u ∈ U do
6: if CollisionFree(v, u) then
7: E ← E ∪ {(v, u), (u, v)}
8: end if
9: end for

10: end for
11: return G = (V, E)

The function Near(G, v, r) finds the subset of vertices in G that are within r distance of
v. The CollisionFree(v, u) function checks whether or not there is a path from u to v that
doesn’t collide with any obstacles, taking into account physics and the vehicle dynamics.

Figure 7.6
Points within the circle returned by Near(·)

PRM is guaranteed to be sound. If you sample enough, e.g. N is large enough, then PRM
is probabilistically complete. PRM isn’t guaranteed to find the optimal solution because it
is randomized depending on sampling.

7.4.2.1 Probabilistic completeness A motion planning problem P = (Xfree, xinit, Xgoal)
is robustly feasible if ∃ some small δ > 0 such that a solution remains a solution if obstacles
are dilated by δ.

Consider figure 7.7. It is not robust because if the Xobs space is dilated by a small non-
negative delta, the path to the goal state will be cut off. It is important to note that the
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Figure 7.7
A non-robust planning problem

key to robustness is a small δ. An arbitrary size δ would make all planning problems non
robust. Instead it is intended that δ is a tiny value, where dilating the Xtextobs space by even
the tiniest amount makes the solution we had no longer the solution. A good example of
this is an asymptote. An asymptote itself does not touch whatever it is an asymptote of, but
adding the smallest of values to it would make make it touch.

We say that an algorithm ALG is probabilistic completeness if, for any robustly feasible
motion planning problem defined by P = (Xfree, xinit, Xgoal), limN−→∞ Pr(ALG returns a solution to P) =
1. Here the probability is coming from the sampling that is being done.

7.4.2.2 Asymptotic optimality An algorithm ALG is asymptotically optimal if, for any
motion planning problem P = (Xfree, xinit, Xgoal) and cost function c that admit a robust
optimal solution with finite cost c∗,

P
(
{ lim
i−→∞

c(YALG
i ) = c∗}

)
= 1

.

Exercise 7.1. Explore why PRM is not asymptotically optimal.

7.4.3 Rapidly Expanding Random Trees (RRT)
Properties

• Single-query
• Not asymptotically optimal

The idea of RRT is to build in real time a tree, exploring the region of the state space
that can be reached from the initial condition. At each step of the algorithm, one point is
sampled from Xfree (all space outside the obstacles), and connect the closest vertex to this
sampled point. This is what enables the tree to grow.
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1: V ← {xinit}

2: E ← ∅
3: for i = 1, ...,N do
4: xrand ← S ampleFreei

5: xnearest ← Nearest(G = (V, E), xrand)
6: xnew ← S teer(xnearest, xrand)
7: if ObstacleFree(xnearest, xnew then
8: V ← V ∪ {xnew}

9: E ← E ∪ {xnearest, xnew}

10: end if
11: end for
12: return G = (V, E)

The function Obstacle f ree(·) is analogous to CollisionFree(·) in PRM. The Steer Func-
tion takes into account the vehicle dynamics to determine whether it is feasible to go from
one point to another. There is a bias towards sampling points that are closer to Xgoal, called
Voronoi Bias.

Figure 7.8
A Voronoi Diagram

7.4.3.1 Voronoi Diagram and Bias Given n ∈ Rd points, the Voronoi Diagram of the
points ia partition of Rd into regions of one point each, such that the point inside a region
is closer to that entire region than any other point. The vertices of RRT that are more
”isolated” have larger Voronoi regions, and are more likely to be selected for extension,
hence the bias of expansion towards the goal state.



MITPress NewMath.cls LATEX Book Style Size: 7x9 August 19, 2023 9:38pm

72 Chapter 7

7.4.4 Rapidly Exploring Random Graphs
Rapidly Exploring Random Graphs (RRG) tries to connect the new sample xnew to all
vertices in a ball of radius rn centered at it.

1: V ← {xinit}

2: E ← ∅
3: for i = 1, ...,N do
4: xrand ← S ampleFreei

5: xnearest ← Nearest(G = (V, E), xrand)
6: xnew ← S teer(xnearest, xrand)
7: if ObstacleFree(xnearest, xnew then
8: Xnear ← Near(G = (V, E), xnew,min{γRRG(log(|V |)/|V |)1/d, η})
9: V ← V ∪ {xnew}

10: E ← E ∪ {(xnearest, xnew), (xnew, xnearest)}
11: for eachxnear ∈ Xnear do
12: if CollisionFree(xnear, xnew) then
13: E ← E ∪ {(xnear, xnew), (xnew, xnear)}
14: end if
15: end for
16: end if
17: end for
18: return G = (V, E)
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