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1 Introduction

Welcome! In this first assignment, you get to practice an invariance proof, play with simple simulations for
testing a safety requirement, and design using these ideas.

In part one (Section 2), you will use the inductive method to prove safety of an Automatic Emergency
Braking scenario. You will need to show that, under some assumptions, the system is indeed safe, i.e., the
vehicle will never hit the pedestrian. In Section 3, you will create a decision logic, which helps the vehicle
avoid collisions with pedestrians and maximize average speeds.

Problems 1-4 must be done individually and Problem 5 can be done in groups of 2-3 people. All the regu-
lations for academic integrity and plagiarism spelled out in the student code apply.

Learning objectives

• Know and use inductive method for proving invariants

• Basics of reachability analysis

• Exercise safe design thinking with tests and reachability analysis

System requirements

• Ubuntu 20.04, Python 3.8 or above, Verse library

2 Safety Analysis of Automatic Emergency Braking

We define an explicit model of scenario involving a vehicle and a pedestrian as shown in Figure 1. In this
model, x1, v1, x2, and v2 are state variables. x1 and v1 correspond to the position and velocity of our vehicle.
x2 and v2 correspond to the position and velocity of the pedestrian. We use the convention that d(t) is the
valuation of the state variable at time t. That is, d(0) = x2(0)− x1(0) = x20 − x10, d(1) is the value of d after
the program is executed once, d(2) after the program is executed a second time, and so on. Similarly, we
can refer to other state variables in the same manner e.g. x1(t) and x1(t + 1) refer to the valuation of x1 in
two different time instances. Dsense is a constant, which is the sensing distance: if d(t) ≤ Dsense , the vehicle
applies the brakes and decelerates.

1 SimpleCar(Dsense,v0,x10,x20,ab),x20 > x10

2 Initially: x1(0) = x10, x2(0) = x20, v1(0) = v0, v2(0) = 0
3 s(0) = 0, timer(0) = 0, timer2(0) = 0
4 d(t) = x2(t)− x1(t)
5 if d(t) ≤ Dsense

6 s(t+ 1) = 1
7 if v1(t) ≥ ab
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Figure 1: Vehicle and pedestrian on a single lane. Left: Initial positions of the two are at x10 and x20, respec-
tively. Right: Vehicle undergoes constant deceleration ab once the pedestrian is detected by the vehicle.

8 v1(t+ 1) = v1(t)− ab
9 timer(t+ 1) = timer(t) + 1

10 timer2(t+ 1) = timer2(t)
11 else
12 v1(t+ 1) = 0
13 timer(t+ 1) = timer(t)
14 timer2(t+ 1) = timer2(t)
15 else
16 s(t+ 1) = 0
17 v1(t+ 1) = v1(t)
18 timer(t+ 1) = timer(t)
19 timer2(t+ 1) = timer2(t) + 1
20 x1(t+ 1) = x1(t) + v1(t)

We will use the above model and we call it model A. Consider the following invariant:

Invariant 1. Over all executions of A, timer(t) + v1(t)/ab ≤ v0/ab.

Problem 1 (30 points). Is 0 ≤ v(t) ≤ v0 an invariant of A? No need to write a complete proof; a two sentence
argument would suffice.

Problem 2 (30 points). Is timer(t) ≤ v0/ab an invariant of A? Explain why. Can we use the induction
method to prove this invariant? If so, present your proof.

Hint: You may find the usage of other invariants handy in your proof.

Problem 3 (40 points). Let us now introduce some delay in the sensing-computation-actuation pipeline,
say Treact. This could model cognitive delay of a human driver or processing delay in electronics and
computers. Assume we have exactly Treact seconds delay between the sensing of the pedestrian and the
application of the brakes (the start of the deceleration). Moreover, let us also introduce acceleration to the
vehicle: whenever the vehicle is outside the sensing distance, the vehicle undergoes constant acceleration
as. Rewrite the new updated model with the sensing delay and vehicle acceleration.

Problem 4 (10 bonus points). Identify additional assumptions on x20, x10, Dsense under which the system
is safe. That is, come up with an new invariant such that you can prove this invariant using the method
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of induction, the assumptions, and the previously proved invariants. (Note: This question is much more
difficult than previous one. If you get stuck with it, try to solve coding section first then get back to this
one)

Hint: Try the assumptions: x20 − x10 ≥ Dsense and Dsense > v20/ab + 2v0 and the invariant d(t) > 0.

Submission Instructions Problems 1-4 must be done individually (Homework 0). Write solutions to each
problem in a file named <netid>_ECE484_HW0.pdf and upload the document in Canvas. Include your
name and netid in the pdf. This should be individual work. You may discuss concepts with others, but not
use written notes from those discussions. If you use/read any material outside of those provided for this
class to help grapple with the problem, you should cite them explicitly.

3 Testing Automatic Emergency Braking with Simulations

You are in charge of designing the autmatic emergency braking (AEB) decision logic (DL) for a car. You will
write the DL code and test it. You will have to provide evidence that will convince auditors that your
design is safe. The design should not be too conservative, i.e., hard-brake all the time, and try to achieve
high average speed.

3.1 Scenario Description and Assumptions

Figure 2: The vehicle-pedestrian scenario illustration.

The scenario is shown in Figure 2. There are two agents: the car (C) and the pedestrian (P). C is moving
down the straight road with its initial position (xc, yc) and initial velocity vc. P is moving across the road
with its position (xp, yp) and its velocity vp. The dynamics of C is the kinematic bicycle model. C has a
sensor that detects P when the two agents are within ds(= 60m) distance of each other. When P is within
ds distance, the DL function will have the exact euclidean distance between the C and P. Otherwise, it gets
an arbitrary large value.

C can run in four modes: Normalmode keeps the velocity constant; Brake and HardBrake induce braking
with different deceleration a; Accel speeds-up C.

The DL sets the mode for C based on different conditions on the variables. For example:

1 def decisionLogic(ego: State, other: State):
2 output = copy.deepcopy(ego)
3 ## When C and P < 12 meters away, then Brake:
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4 if ego.agent_mode == VehicleMode.Normal and other.dist < 12:
5 output.agent_mode = VehicleMode.Brake
6 ## Safety assertion:
7 assert other.dist > 2.0
8 return output

Listing 1: Baseline Decision Logic

This DL establishes that when C is in Normal mode and the distance between C and P is smaller than 12m
(note 12m is less than ds), C will start to brake. The assert is a standard way to state requirements in
Python. Here the safety requirement is the C has to be at least 2m away from the P. Whenever the assert
is violated, the simulation will stop.

3.2 Design Targets

Create a single DL so that the system is safe starting from any initial condition in a given range R, up to a
time horizon Ts = 50s.

Given a deterministic DL and a particular initial condition in R, the complete system has a unique execution.
An execution is safe if P is never within 2m distance from C within Ts. For this MP, there are three R’s of
increasing difficulty; you have to submit a single DL.

• R1: xc, yc ∈ [−5, 5]; vc = 8; xp = 175; yp = −55; vp = 3.

• R2: xc, yc ∈ [−5, 5]; vc ∈ [5, 10]; xp = 175; yP = −55; vP = 3.

• R3: xc, yc ∈ [−5, 5]; vc ∈ [5, 10]; xp ∈ [165, 175]; yp ∈ [−55,−50]; vP = 3.

Design the DL to ensure that all executions starting from Ri are safe as well as to maximize the average
speed of C within Ts. Of course, designing for R2 is harder than that for R1 and so forth. So, you get
higher points for a design that works for a higher Ri. The rest of the document describes the files you have
to work with, the submission process, and some of the functions you can use for testing.

3.3 Documentation of Provided Files

We have pre-installed necessary libraries in the lab machines, so you don’t have to install any additional
packages. To get MP0’s source code, run the below commands:

1 git clone https://gitlab.engr.illinois.edu/GolfCar/mp-release-23fa.git

Listing 2: Retrieving MP0 Code

The supporting code is available from this git repo in ./src/mp0. The important files are:

The file vehicle_controller.py contains (1) the definition of modes of agents (do not change); (2) definition
of state variables of agents (do not change); (3) decision logic for automatic emergency braking. You will
edit this last part only.

What you can and cannot write in DL. You will write a DL of the same type as in Listing 1 within the
function decisionLogic. The inputs to the function are ego, the full state of C (ego.x, ego.y, ego.v)
and other, the sensed state of P (other.dist).

The DL has to be straight-line if-then-else code. In the if condition, you can only write linear inequalities
or equalities, and Python logical operators. In the if body, you can assign the output.agent_mode to
one of Normal, Brake, HardBrake, and Accel .
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vehicle_pedestrian_scenario.py This file contains the mechanism to create different vehicle-pedestrian
scenarios. The three different initial ranges R1, R2 and R3 are provided in this file. In addition, we
provide function sample_init for randomly sampling points from the initial range to perform different
simulations of the scenario. You can change the number of samples to simulate or modify how the initial
points are generated in this function.

3.4 Simulations and Testing

Run vehicle_pedestrian_scenario.py to generate simulations.

1 cd mp-release-23fa/mp0/src/
2 python3 vehicle_pedestrian_scenario.py

Listing 3: Command to run simulations

Here are the key functions.

trace = scenario.simulate(time_horizon, time_step): Runs a single simulation from a ran-
domly sampled initial point chosen from R. When the simulation is unsafe, you will get message assert
hit for car in the terminal.

• time_horizon: Float, the total time for the scenario to evolve.

• time_step: Float, the time sampling period.

• trace: AnalysisTree object containing the simulated trajectory. The trajectory can be visualized using
the simulation_tree_3d function. The AnalysisTree object holds a list of AnalysisTreeNode that
contains execution of the scenario for each mode of C. To access the exact trajectory of C in a mode,
one can do AnalysisTree.nodes[i].trace[’car’]. The trace will be in the form of a numpy
array.

init_list=sample_init(scenario, num_sample): Samples initial points from the scenario’s ini-
tial range.

• scenario: the current scenario to sample initial point from.

• num_sample: Int, the number of initial point sampled from initial range.

• init_list: List[Dict], a list of dictionary containing different initial points to perform simulation.
The key of the dictionary is car and pedestrian and the value of the dictionary is a list of Float
specifying the initial point for C or P sampled from the initial range of the input scenario.

traces = scenario.simulate_multi(time_horizon, time_step, init_dict_list): Perform
multiple simulations starting from different initial points.

• time_horizon: Float, the total time for the scenario to evolve.

• time_step: Float, the time period that the state of the scenario is sampled.

• init_dict_list: List[Dict], the initial dict generated by the sample_init function

• trace: List[AnalysisTree], a list of AnalysisTrees containing the simulated trajectory for each of the
inital point.

fig = simulation_tree_3d(tree, fig, x, x_title, y, y_title, z, z_title): Visualize
result from scenario.simulate and scenario.simulate_multi.

• tree: The resulting trajectory generated by the scenario.simulate or scenario.simulate_multi
functions.

• fig: Figure object, the figure object to plot on.
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• x,y,z: Int, the index of x (or y, z) dimension to be plotted.

• x_title, y_title, z_title: Str, the x, y, z axis label

• fig: Figure object. A 3d plot with tree axes as time and x,y position of C and P. The plot can be shown
using the fig.show() function as shown in Listing 4 and Listing 5

avg_vel, unsafe_frac, unsafe_init = eval_velocity(traces): Compute average velocity
and count the number of unsafe simulations.

• traces: List, the list of simulation trajectories generated by scenario.simulate_multi function

• avg_vel: Float, the average velocity of C among all simulations.

• unsafe_frac: Float, the fraction of unsafe simulation among total number of simulations

• unsafe_init: List, the list of initial points that are unsafe.

Examples usages are presented in Listing 4 and 5. The corresponding plots are presented in Figure 3. Note
that, although the system is simulated to be safe for R1, the same decision logic may fail for a different R
as shown in Figure 4 for R2.

1 trace = scenario.simulate(50, 0.1)
2 fig = go.Figure()
3 fig = simulation_tree_3d(trace, fig, 0,’time’, 1,’x’,2,’y’)
4 fig.show()

Listing 4: Code for a single simulation.

1 init_dict_list= sample_init(scenario.init_dict, num_sample=50)
2 traces = scenario.simulate_multi(50, 0.1,init_dict_list=init_dict_list)
3 fig = go.Figure()
4 for trace in traces:
5 fig = simulation_tree_3d(trace, fig,0,’time’, 1,’x’,2,’y’)
6 fig.show()
7 avg_vel, unsafe_reac, unsafe_init = eval_velocity(traces)

Listing 5: Code for mutiple simulations.

3.5 Reachability analysis

You can use reachability analysis to perform more thorough check on your DL. Recall, reachability over-
approximates all possible executions, and so, if the analysis says the system is safe then you are guaranteed
safety, but if it says unsafe, that does not necessarily mean that there is a counter-example. Reachability
analysis from a smaller initial set usually results in a tighter (less conservative) approximation.

If the DL is not safe for entire R, then you can manually partition R into smaller sub-regions and present
evidences of your DL’s safety in these sub-regions.

traces, safe, unsafe = verify_refine(scenario, time_horizon, time_step): Compute
reachable set and check the safety of the scenario. Due to the over-approximation, reachability analysis may
produce spurious counter examples. In this case, verify_refine can automatically partition the initial
ranges into smaller regions to get more precise reachability analysis result.

• scenario: the scenario to verify.

• time_horizon: Float, the total time to perform reachability analysis.

• time_step: Float, the time period that the reachable set is sampled.

• traces: AnalysisTree, the computed reachtube for the scenario. The data structure is the same as
that produced by scenario.simulate.
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(a) Plot for a single simulation. (b) Plot for multiple simulations.

Figure 3: Simulation of scenario starting from R1. The red curve represents C’s trajectory, while the blue
represents the pedestrian’s. We can see from both plots that as C approaches P, it will slow down and
eventually stop as described in the decision logic in Listing 1.

Figure 4: The baseline decision logic in Listing 1 when simulated on R2 leads to unsafe behavior as C is not
able to brake in time to avoid collision with P (note the difference in velocity range of C between R2 and
R1).
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(a) Reachtube analysis that guarantees safety.
(b) Reachtube analysis that can’t guarantee
safety.

• safe: List, the subregions that are proved to be safe after partition.

• unsafe: List, the subregions that are still unsafe.

fig = reachtube_tree_3d(tree, fig, x, x_title, y, y_title, z, z_title): Visualize
reachtubes computed by verify_refine.

• tree: The resulting trajectory generated by the verify_refine function.

• fig: Figure object, the figure object to plot on.

• x,y,z: Int, the index of x (or y) dimension to be plotted.

• x_title, y_title, z_title: Str, the x, y, z axis label

• fig: Figure object. A 3d plot with tree axes as time and x,y position of C and P. The plot can be shown
using the fig.show() function as shown in Listing 6.

1 traces = verify_refine(scenario, 50, 0.1)
2 fig = go.Figure()
3 fig = reachtube_tree_3d(traces, fig, 0,’time’, 1,’x’,2,’y’)
4 fig.show()

Listing 6: Code for the reachtube simulation.

Listing 6 shows an example of performing reachability analysis and generating plots using above functions.
As we can see from Figure 5a, the reachtubes of C and P don’t overlap with each other by any part. This
means the trajectories of C and P can’t intersect under all possible scenarios, and thus safety gets guaran-
teed. In comparison, the two reachtubes touch each other in Figure 5b, which means the trajectories of C
and P can potentially intersect. Hence, safety cannot be guaranteed.

3.6 Design Outcomes & Grading

Problem 5 (45 points). (a) (15 points) In your write-up, present your evidence for safety of your design of
the DL. Which Ri do you claim you DL is safe for? What is the evidence for safety? Evidence could be a set
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of tests or simulations. It could also be the computation or over-approximation of the reachable states from
Ri, or it could be an invariant proof with appropriately stated assumptions.

(b) (15 points) What is the average speed you achieve over Ri? How do you justify this answer?

(c) (15 points) In 3 or fewer sentences, describe the basic idea of your DL design for achieving safety and
high average speed.

Auto-grading Score: 45 pts. Specifically, there are 10 pts on R1, 15 pts on R2, and 20 pts on R3. The
percentage of score you can get on each Ri will be calculated as Listing 7. As you can see, we use 7 m/s as
a threshold to evaluate your DL’s performance on speeds.

1 autograded_part_score = % of successful hidden simulation tests * (1 - penalty)
2 penalty = 0.5 if avg_vel <= 7(threshold) else 0

Listing 7: Auto-grading Scoring Formula.

Problem 5 can be done in groups of 2-3. Submit a single report with name MP0_<groupname>.pdf to
Canvas. Please include the names and netids of all the group members and cite any external resources you
may have used in your solutions.

For DL, rename your vehicle_controller.py to netid1_netid2_netid3.py and submit ONLY
that python file to auto-grading site. You can submit for an unlimited times before the deadline, and we
will grade the latest version.

Demo Attendance: 10 pts. Attend your lab session on September 8th to demo your design logic. Every
group member needs to show up. We will ask questions regarding your DL, and every group member
should show his or her understanding of it.

3.7 Submissions

The maximum one can get from this HW is 110pts (including 10pts bonus). The maximum one can get from
this MP is 100 pts.

1. (110pts) Everyone submits individual <netid>_ECE484_HW0.pdf on Canvas

2. (45pts) Only one group member needs to submit MP0_<groupname>.pdf on Canvas

3. (45pts) Only one group member needs to submit netid1_netid2_netid3.py on auto-grading site

4. (10pts) Everyone needs to attend demo, and this part will be graded individually

1-3 are due 11:59pm CST 9/8. 4 is due by the time of your discussion section
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