Sampling-based Planning and Control Lecture 18

Principles of Safe Autonomy ECE484
Sayan Mitra

Motion planning problem

- Get from point A to point B avoiding obstacles
- Last few lectures we saw how to search for collision free trajectories can be converted to graph search
- Hybrid A* aims to add dynamical constraints to make paths realizable
- Now we will study sampling-based motion planning/search algorithms that can directly incorporate dynamical constraints

Motion planning problem

Consider a dynamical control system defined by an ODE of the form $\frac{d x}{d t}=f(x, u), x(0)=x_{\text {init }}$.
where x is the state, u is the control. Given an obstacle set $X_{\text {obst }} \subset R^{d}$, and a goal set $X_{\text {goal }} \subset R^{d}$, the objective of the motion planning problem is to find, if it
 exists, a control signal u such that the solution of (1) satisfies

- for all $t \in R_{\geq 0}, x(t) \notin X o b s$, and
- for some finite $\mathrm{T} \geq 0$, for all $\mathrm{t}>\mathrm{T}, x(t) \in X_{\text {goal }}, 0$
- Return failure if no such control signal exists.

Canonical problem

- Basic problem in robotics
- Autonomous vehicles
- Puzzles
- Provably very hard: a basic version (the Generalized Piano Mover's problem) is known to be PSPACE-hard [Reif, '79].
- But evolution has found ingenious solutions: E.g., Tunicate is a simple organism capable of basic planning to finds a suitable rock to cement itself in place.
- Once it becomes stationary, it digests its own cerebral ganglion, or "eats its own brain" and develops a thick covering, a "tunic" for self defense. [S. Soatto, 2010, R. Bajcsy, 1988] http://en.wikipedia.org/wiki/File:Sea-tulip.jpg.

Types of planners

- Discretization + graph search: Analytic/grid-based methods do not scale well to high dimensions.
- A*, $D *$, etc. can be sensitive to graph size. Resolution complete.
- Algebraic planners: Explicit representation of obstacles.
- Use complicated algebra (visibility computations/projections) to find the path. Complete, but often impractical.
- Potential fields/navigation functions: Virtual attractive forces towards the goal, repulsive forces away from the obstacles.
- No completeness guarantees, unless "navigation functions" are available-very hard to compute in general.

Sampling-based algorithms

Solutions are computed based on samples from some distribution.

Retain some form of completeness, e.g., probabilistic completeness

Incremental sampling methods

- Lend themselves to real-time, on-line implementations
- Can work with very general dynamics
- Do not require explicit constraints

Outline

- Probabilistic Roadmaps
- Rapidly expanding random trees (RRT)
- RRG

Probabilistic RoadMaps (PRM)

- Introduced by Kavraki and Latombe in 1994
- Mainly geared towards "multi-query" motion planning problems
- Idea: build (offline) a graph (i.e., the roadmap) representing the "connectivity" of the environment; use this roadmap to figure out paths quickly at run time.
- Learning/pre-processing phase:
- Sample n points from $X_{\text {free }}=[0,1]^{d} \backslash X_{o b s}$
- Try to connect these points using a fast "local planner" (e.g., ignore obstacles).
- If connection is successful (i.e., no collisions), add an edge between the points.
- At run time:
- Connect the start and end goal to the closest nodes in the roadmap
- Find a path on the roadmap
- First planner ever to demonstrate the ability to solve general planning problems in $>4-5$ dimensions!

PRM in action

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996), "Probabilistic roadmaps for path planning in highdimensional configuration spaces", IEEE Transactions on Robotics and Automation, 12 (4): 566-580

Picture from Wikipedia.org
https://en.wikipedia.org/wiki/Probabilistic_roadmap

Simple PRM construction

$V \leftarrow\left\{\mathrm{X}_{\text {init }}\right\} \cup\{\text { SampleFreei }\}_{\mathrm{i}=1, \ldots, \mathrm{~N}-1}$
$\mathrm{E} \leftarrow \emptyset$
foreach $v \in V$ do
$\mathrm{U} \leftarrow \operatorname{Near}(\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{v}, \mathrm{r}) \backslash\{\mathrm{v}\}$ foreach $u \in U$ do if CollisionFree (v, u) then

$$
\mathrm{E} \leftarrow \mathrm{E} \cup\{(\mathrm{v}, \mathrm{u}),(\mathrm{u}, \mathrm{v})\}
$$

return $G=(V, E)$
$\operatorname{Near}(\mathrm{G}, \mathrm{v}, \mathrm{r})$: Finds the subset of vertices in G that are within r distance of v

CollisionFree (v, u) : checks whether there is a path from u to v that does not collide with the obstacles

Probabilistic RoadMap

- Connect points within a radius r, starting from "closest" ones
- Do not attempt to connect points already on the same connected component of PRM
- What properties does this algorithm have?

- Will it find a solution if one exists?
- Is this an optimal solution?
- What is the complexity?

Probabilistic completeness

Definition. A motion planning problem $P=\left(X_{\text {free }}, x_{\text {init }}, X_{\text {goal }}\right)$ is robustly feasible if there exists some small $\delta>0$ such that a solution remains a solution if obstacles are "dilated" by δ.

Fig. not robust.

Definition. An algorithm ALG is probabilistically complete if, for any robustly feasible motion planning problem defined by $P=$
$\left(X_{\text {free }}, x_{\text {init }}, X_{\text {goal }}\right), \lim _{N \rightarrow \infty} \operatorname{Pr}(A L G$ returns a solution to $P)=1$.

- Applicable to motion planning problems with a robust solution.

Asymptotic optimality

Suppose we have a cost function c that associates to each path σ a non-negative cost $c(\sigma)$, e.g., $c(\sigma)=\int_{\sigma} \chi(s) d s$.

Definition. An algorithm ALG is asymptotically optimal if, for any motion planning problem $P=\left(X_{\text {free }}, x_{\text {init }}, X_{\text {goal }}\right)$ and cost function c that admit a robust optimal solution with finite $\operatorname{cost} c^{*}$,

$$
\boldsymbol{P}\left(\left\{\lim _{i \rightarrow \infty} Y_{i}^{A L G}=c^{*}\right\}\right)=1
$$

Remarks on PRM

- The simplified version of the PRM (sPRM) algorithm has been shown to be probabilistically complete. (No proofs available for the "real" PRM!)
- Moreover, the probability of success goes to 1 exponentially fast, if the environment satisfies certain "good visibility" conditions.
- But, NOT asymptotically optimal
- New key concept: combinatorial complexity vs. "visibility"

Complexity of Sampling-based Algorithms

- How can we measure complexity for an algorithm that does not necessarily terminate?
- Treat the number of samples as "the size of the input." (Everything else stays the same)
- Complexity per sample: how much work (time/memory) is needed to process one sample.
- Useful for comparison of sampling-based algorithms. Not for deterministic, complete algorithms.
- Complexity of PRM for N samples $\Theta\left(N^{2}\right)$
- Practical complexity reduction tricks
- k-nearest neighbors: connect to the k nearest neighbors. Complexity $\Theta(N \log N)$. (Finding nearest neighbors takes log N time.)
- Bounded degree: connect at most k neighbors among those within radius r.
- Variable radius: change the connection radius r as a function of N. How?

Rapidly Exploring Random Trees (RRT)

- Introduced by LaValle and Kuffner in 1998
- Appropriate for single-query planning problems
- Idea: build (online) a tree, exploring the region of the state space that can be reached from the initial condition.
- At each step: sample one point from $X_{\text {free }}$, and try to connect it to the closest vertex in the tree.
- Very effective in practice

RRT

LaValle, Steven M.; Kuffner Jr., James
J. (2001). "Randomized Kinodynamic

Planning" (PDF). The International Journal of
Robotics Research (IJRR). 20 (5): 378-
400. doi:10.1177/02783640122067453. S2CID 4047
9452.

RRT

```
V}\leftarrow{\mp@subsup{\textrm{x}}{\mathrm{ init }}{}};\textrm{E}\leftarrow
for i=1, ...,N do
    \mp@subsup{x}{\mathrm{ rand }}{}\leftarrow\mp@subsup{\mathrm{ SampleFree }}{\textrm{i}}{}
    x nearest
    \mp@subsup{x}{\mathrm{ new }}{}\leftarrow\operatorname{Steer(}\mp@subsup{\textrm{x}}{\mathrm{ nearest,}}{},\mp@subsup{\textrm{x}}{\mathrm{ rand }}{})
    if ObtacleFree( ( }\mp@subsup{\mathrm{ nearest,}}{}{\prime}\mp@subsup{x}{\mathrm{ new }}{})\mathrm{ then
    V}\leftarrow\textrm{V}\cup{\mp@subsup{\textrm{x}}{\mathrm{ new }}{}
    E\leftarrowE\cup{(\mp@subsup{x}{\mathrm{ nearest,}}{},\mp@subsup{\textrm{x}}{\mathrm{ new }}{})}
return G = (V, E)
```


Voronoi bias

Given n points in d dimensions, the Voronoi diagram of the points is a partition of R^{d} into regions, one region per point, such that all points in the interior of each region lie closer to that regions site than to any other site.

Try it: http://alexbeutel.com/webgl/voronoi.html

Voronoi bias. Vertices of the RRT that are more "isolated" (e.g., in unexplored areas, or at the boundary of the explored area) have larger Voronoi regions-and are more likely to be selected for extension.

RRT in action [Frazzoli]

- Talos, the MIT entry to the 2007 DARPA Urban Challenge, relied on an"RRT-like" algorithm for real-time motion planning and control.
- The devil is in the details: provisions needed for, e.g.,
- Real-time, on-line planning for a safety-critical vehicle with substantial momentum.
- Uncertain, dynamic environment with limited/faulty sensors.
- Main innovations [Kuwata, et al. '09]
- Closed-loop planning: plan reference trajectories for a closed-loop model of the vehicle under a stabilizing feedback
- Safety invariance: Always maintain the ability to stop safely within the sensing region.
- Lazy evaluation: the actual trajectory may deviate from the planned one,need to efficiently recheck the tree for feasibility.
- The RRT-based P+C system performed flawlessly throughout the race.
- https://journals.sagepub.com/doi/abs/10.1177/0278364911406761

Limitations

The MIT DARPA Urban Challenge code, as well as other incremental sampling methods, suffer from the following limitations:

- No characterization of the quality (e.g., "cost") of the trajectories returned by the algorithm.
- Keep running the RRT even after the first solution has been obtained, for as long as possible (given the real-time constraints), hoping to find a better path than that already available.
- No systematic method for imposing temporal/logical constraints, such as, e.g., the rules of the road, complicated mission objectives, ethical/deontic code.
- In the DARPA Urban Challenge, all logics for, e.g., intersection handling, had to be hand-coded, at a huge cost in terms of debugging effort/reliability of the code.

RRTs and Asymptotic Optimality

- RRTs are great at finding feasible trajectories quickly, however, RRTs are apparently terrible at finding good trajectories. Why?
- Let $Y^{R R T}$ be the cost of the best path in the RRT at the end of iteration n.
- It is easy to show that $Y^{R R T}$ converges (to a random variable), $\lim _{n \rightarrow \infty} Y_{n}^{R R T}=Y_{\infty}^{R R T}$.
- The random variable $Y_{\infty}^{R R T}$ is sampled from a distribution with zero mass at the optimum

Theorem [Karaman \& Frizzoli`10] (Almost sure sub-optimality of RRTs) If the set of sampled optimal paths has measure zero, the sampling distribution is absolutely continuous with positive density in $X_{\text {free }}$, and $\mathrm{d} \geq 2$, then the best path in the RRT converges to a sub-optimal solution almost surely, i.e.,

$$
\operatorname{Pr}\left[Y_{\infty}^{R R T}>c^{*}\right]=1
$$

Why is RRT not asymptotically optimal?

- Root node has infinitely many subtrees that extend at least a distance ϵ away from $x_{\text {init }}$.
- The RRT algorithm "traps" itself by disallowing new better paths to emerge. Why?
- Heuristics such as running the RRT multiple times, running multiple trees concurrently etc., work better than the standard RRT, but also result in almost-sure sub-optimality.
- A careful rethinking of the RRT algorithm is required for (asymptotic) optimality.

Rapidly Exploring Random Graphs (possibly cyclic)

```
V}\leftarrow{\mp@subsup{x}{\mathrm{ init }}{}};E\leftarrow\emptyset
for i=1, . . , N do
    x rand }\leftarrow\mathrm{ SampleFreei;
    \mp@subsup{x}{\mathrm{ nearest }}{}\leftarrow\operatorname{Nearest(G = (V, E), ( }\mp@subsup{\textrm{x}}{\mathrm{ rand }}{});
```



```
    if ObtacleFree( }\mp@subsup{\textrm{x}}{\mathrm{ nearest,}}{},\mp@subsup{x}{\mathrm{ new }}{})\mathrm{ then
        X near }\leftarrow\operatorname{Near(G = (V, E), \mp@subsup{x}{\mathrm{ new, }}{},\operatorname{min}{\mp@subsup{Y}{\mathrm{ RRG }}{}(\operatorname{log}(card V)/ card V) 1/d},\eta})
        V}\leftarrow\textrm{V}\cup{\mp@subsup{\textrm{x}}{\mathrm{ new }}{}};\textrm{E}\leftarrow\textrm{E}\cup{(\mp@subsup{\textrm{x}}{\mathrm{ nearest,}}{},\mp@subsup{\textrm{x}}{\mathrm{ new }}{}),(\mp@subsup{\textrm{x}}{\mathrm{ new, }}{},\mp@subsup{\textrm{x}}{\mathrm{ nearest }}{})}
        foreach }\mp@subsup{\textrm{x}}{\mathrm{ near }}{}\in\mp@subsup{X}{\mathrm{ near }}{}\mathrm{ do
        if CollisionFree( }\mp@subsup{\textrm{x}}{\mathrm{ near }}{},\mp@subsup{\textrm{x}}{\mathrm{ new }}{})\mathrm{ then }\textrm{E}\leftarrow\textrm{E}\cup{(\mp@subsup{\textrm{x}}{\mathrm{ near }}{},\mp@subsup{\textrm{x}}{\mathrm{ new }}{}),(\mp@subsup{\textrm{x}}{\mathrm{ new }}{},\mp@subsup{\textrm{x}}{\mathrm{ near }}{})
return G = (V, E);
```

At each iteration, the RRG tries to connect the new sample $x_{\text {new }}$ to all vertices in a ball of radius r_{n} centered at it. (Or just default to the nearest one if such b all is empty.)

Theorems [Proofs not required for exam]

- Probabilistic completeness. Since $V_{n}^{R R G}=V_{n}^{R R T}$, for all n RRG has the same completeness properties as RRT, i.e.,

$$
\operatorname{Pr}\left[V_{n}^{R R G} \cap X_{\text {goal }}=\emptyset\right]=O\left(e^{-b n}\right)
$$

- Asymptotic optimality. If the Near procedure returns all nodes in V within a ball of volume $\mathrm{Vol}=\frac{\gamma \log n}{n}, \gamma>2^{d}\left(1+\frac{1}{d}\right)$, under some additional technical assumptions (e.g., on the sampling distribution, on the ϵ clearance of the optimal path, and on the continuity of the cost function), the best path in the RRG converges to an optimal solution almost surely, i.e.,

$$
\operatorname{Pr}\left[Y_{\infty}^{R R G}=c^{*}\right]=1
$$

Final thoughts on RRG

-What is the additional computational load?

- O(log n) extra calls to ObstacleFree compared to RRT
- Key idea in RRG/RRT*:
- Combine optimality and computational efficiency, it is necessary to attempt connection to $\Theta(\log N)$ nodes at each iteration.
- Reduce volume of the "connection ball" as $\log (N) / N$;
- Increase the number of connections as $\log (\mathrm{N})$.
- These principles can be used to obtain "optimal" versions of PRM, etc.

Summary and future directions

- State-of-the-art algorithms such as RRT converge to a NON-optimal solution almostsurely
- new algorithms (RRG and the RRT*), which almost-surely converge to optimal solutions while incurring no significant cost overhead
- Bibliographical reference: S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. Int. Journal of Robotics Research, 2011. TAlso available at http://arxiv.org/abs/1105.1186.
- research directions:
- Optimal motion planning with temporal/logic constraints
- Anytime solution of differential games
- Stochastic optimal motion planning (process + sensor noise)
- Multi-agent problems.

Algorithm	Prob. Completeness	Asymptotic Optimality	Complexity	
sPRM	Yes	Yes	O(N)	
k-nearest sPRM	No	No	O(log N)	
RRT	Yes	No	O(log N)	
PRM*	Yes	Yes	O(log N)	
k-nearest PRM	Yes	Yes	O(log N)	
RRG	Yes	Yes	O(log N)	
k-nearest RRG	Yes	Yes	O(log N)	
RRT*	Yes	Yes	O(log N)	
k-nearest RRT*	Yes	Yes	O(log N)	

