Principles of Safe Autonomy: Lecture 12-13: Filtering and Robot Localization Sayan Mitra

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox Slides: From the book's website

Review from last time: Beliefs

Belief: Robot's knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data and we have to distinguish this inferred/estimated state from the actual state x_t $bel(x_t) = p(x_t | z_{1:t}, u_{1:t})$

Posterior distribution over state at time t given all past measurements and control. This will be calculated in two steps:

- 1. Prediction: $\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$
- 2. Correction: Calculating $bel(x_t)$ from $\overline{bel}(x_t)$ a.k.a measurement update (will use Equation (*) from earlier)

Recursive Bayes Filter

Algorithm Bayes_filter($bel(x_{t-1}), u_t, z_t$) for all x_t do: $\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$ $bel(x_t) = \eta p(z_t | x_t) \overline{bel}(x_t)$ end for return $bel(x_t)$

$$bel(x_{t-1}) \qquad \overline{bel}(x_{t-1})$$

$$(1) \qquad p(x_t|u_t, 1)$$

$$(2) \qquad p(x_t|u_t, 2) \qquad x_t \qquad p'$$

$$(3) \qquad p(x_t|u_t, 3) \qquad p(z_t|x_t)$$

$$(bel(x_t))$$

Histogram Filter or Discrete Bayes Filter

Finitely many states x_i, x_k, etc . Random state vector X_t $p_{k,t}$: belief at time t for state x_k ; discrete probability distribution Algorithm Discrete_Bayes_filter($\{p_{k,t-1}\}, u_t, z_t$): for all k do: $\bar{p}_{k,t} = \sum_{i} p(X_t = x_k | u_t X_{t-1} = x_i) p_{i,t-1}$ $p_{k,t} = \eta \ p(z_t \mid X_t = x_k) \overline{p}_{k,t}$ end for return $\{p_{k,t}\}$

Outline of filtering module

- Particle filter
 - Nonparametric representation of distributions with samples
 - Weighted particles
 - Importance sampling
- Monte Carlo localization
- Examples
- Conclusions

Monte Carlo Localization

• Represents beliefs by particles

Particle Filters

- Represent belief by finite number of parameters (just like histogram filter)
- But, they differ in how the parameters (particles) are generated and populate the state space
- Key idea: represent belief $bel(x_t)$ by a random set of state samples
- Advantages
 - The representation is approximate and nonparametric and therefore can represent a broader set of distributions than e.g., Gaussian
 - Can handle nonlinear tranformations
- Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle filtering algorithm

 $X_t = x_t^{[1]}, x_t^{[2]}, \dots x_t^{[M]}$ particles

Algorithm Particle_filter(X_{t-1}, u_t, z_t): $\overline{X}_t = X_t = \emptyset$

for all m in [M] do:

sample
$$x_t^{[m]} \sim p(x_t | u_t, x_{t-1}^{[m]})$$

 $w_t^{[m]} = p\left(z_t | x_t^{[m]}\right)$
 $\bar{X}_t = \bar{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$

end for

for all *m* in [M] do:

```
draw i with probability \propto w_t^{[i]}
add x_t^{[i]} to X_t
```

end for

return X_t

ideally, $x_t^{[m]}$ is selected with probability prop. to $p(x_t \mid z_{1:t}, u_{1:t})$

 \overline{X}_{t-1} is the temporary particle set

// sampling from state transition dist.

// calculates *importance factor* w_t or weight

// resampling or importance sampling; these are distributed according to $\eta p\left(z_t \middle| x_t^{[m]}\right) \overline{bel}(x_t)$

// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Importance Sampling

suppose we want to compute $E_f[I(x \in A)]$ but we can only sample from density g

 $E_f[I(x \in A)]$

 $= \int f(x)I(x \in A)dx$ = $\int \frac{f(x)}{g(x)}g(x)I(x \in A)dx$, provided g(x) > 0= $\int w(x)g(x)I(x \in A)dx$ = $E_q[w(x)I(x \in A)]$

Weight samples: w = f/g

Monte Carlo Localization (MCL)

 $X_t = x_t^{[1]}, x_t^{[2]}, \dots x_t^{[M]}$ particles Algorithm MCL(X_{t-1}, u_t, z_t, m): $\bar{X}_{t-1} = X_t = \emptyset$ for all m in [M] do: $x_t^{[m]} = sample_motion_model(u_t x_{t-1}^{[m]})$ $w_t^{[m]} = measurement_model(z_t, x_t^{[m],m})$ $\bar{X}_t = \bar{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$ end for for all *m* in [M] do: draw *i* with probability $\propto w_t^{[i]}$ add $x_t^{[i]}$ to X_t end for return X_t

Plug in motion and measurement models in the particle filter

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha p(z \mid x) Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha p(z \mid x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z \mid x)$$

Robot Motion

0

.

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

Under a Light

Measurement z:

P(z|x):

Next to a Light

Measurement z:

Elsewhere

Measurement z:

P(z|x):

Global Localization Using Vision

Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- Can we deal with localization errors (i.e., the kidnapped robot problem)?
- How to handle localization errors/failures?
 - Particularly serious when the number of particles is small

Approaches

- Randomly insert samples
 - Why?
 - The robot can be teleported at any point in time
- How many particles to add? With what distribution?
 - Add particles according to localization performance
 - Monitor the probability of sensor measurements $p(z_t|z_{1:t-1}, u_{1:t}, m)$
 - For particle filters: $p(z_t|z_{1:t-1}, u_{1:t}, m) \approx \frac{1}{M} \sum w_t^{[m]}$
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Random Samples Vision-Based Localization 936 Images, 4MB, .6secs/image Trajectory of the robot:

Kidnapping the Robot

Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.

