Principles of Safe Autonomy:
Lecture 12-13:
Filtering and Robot Localization

Sayan Mitra

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book’s website
Review from last time: Beliefs

Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data and we have to distinguish this inferred/estimated state from the actual state x_t

$$bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$$

Posterior distribution over state at time t given all past measurements and control. This will be calculated in two steps:

1. **Prediction**: $\overline{bel}(x_t) = p(x_t|z_{1:t-1}, u_{1:t})$

2. **Correction**: Calculating $bel(x_t)$ from $\overline{bel}(x_t)$ a.k.a. measurement update (will use Equation (*) from earlier)
Recursive Bayes Filter

Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t)
for all x_t do:
 \(\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) \text{bel}(x_{t-1}) \, dx_{t-1} \)
 \(\text{bel}(x_t) = \eta \, p(z_t | x_t) \overline{bel}(x_t) \)
end for
return bel(x_t)
Histogram Filter or Discrete Bayes Filter

Finitely many states x_i, x_k, etc. Random state vector X_t

$p_{k,t}$: belief at time t for state x_k; discrete probability distribution

Algorithm Discrete_Bayes_filter{$p_{k,t-1}$, u_t, z_t}:

for all k do:

\[\bar{p}_{k,t} = \sum_i p(X_t = x_k | u_t, X_{t-1} = x_i)p_{i,t-1} \]

\[p_{k,t} = \eta p(z_t | X_t = x_k)\bar{p}_{k,t} \]

end for

return {$p_{k,t}$}
Outline of filtering module

• Particle filter
 • Nonparametric representation of distributions with samples
 • Weighted particles
 • Importance sampling

• Monte Carlo localization

• Examples

• Conclusions
Sonars and Occupancy Grid Map
Monte Carlo Localization

• Represents beliefs by particles
Particle Filters

• Represent belief by finite number of parameters (just like histogram filter)
• But, they differ in how the parameters (particles) are generated and populate the state space
• Key idea: represent belief $\text{bel}(x_t)$ by a random set of state samples
• Advantages
 • The representation is approximate and nonparametric and therefore can represent a broader set of distributions than e.g., Gaussian
 • Can handle nonlinear transformations
• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa et al., 95]
Particle filtering algorithm

\[X_t = x_t^{[1]}, x_t^{[2]}, ... x_t^{[M]} \text{ particles} \]

Algorithm Particle_filter(}X_{t-1}, u_t, z_t):

\[\bar{X}_t = X_t = \emptyset \]

for all \(m \) in [M] do:

- sample \(x_t^{[m]} \sim p(x_t | u_t, x_{t-1}^{[m]}) \)
- \(w_t^{[m]} = p(z_t | x_t^{[m]}) \)
- \(\bar{X}_t = \bar{X}_t + (x_t^{[m]}, w_t^{[m]}) \)

end for

for all \(m \) in [M] do:

- draw \(i \) with probability \(\propto w_t^{[i]} \)
- add \(x_t^{[i]} \) to \(X_t \)

end for

return \(X_t \)

ideally, \(x_t^{[m]} \) is selected with probability prop. to \(p(x_t | z_{1:t}, u_{1:t}) \)

\(\bar{X}_{t-1} \) is the temporary particle set

// sampling from state transition dist.
// calculates importance factor \(w_t \) or weight

// resampling or importance sampling; these are distributed according to \(\eta p(z_t | x_t^{[m]}) \ bel(x_t) \)

// survival of fittest: moves/adds particles to parts of the state space with higher probability
Importance Sampling

suppose we want to compute $E_f[I(x \in A)]$ but we can only sample from density g

$$E_f[I(x \in A)]$$

$$= \int f(x)I(x \in A)dx$$

$$= \int \frac{f(x)}{g(x)} g(x)I(x \in A)dx, \text{ provided } g(x) > 0$$

$$= \int w(x)g(x)I(x \in A)dx$$

$$= E_g[w(x)I(x \in A)]$$

We need $f(x) > 0 \Rightarrow g(x) > 0$

Weight samples: $w = f / g$
Monte Carlo Localization (MCL)

Let \(X_t = x_t^{[1]}, x_t^{[2]}, \ldots, x_t^{[M]}\) particles

Algorithm MCL(\(X_{t-1}, u_t, z_t, m\)):

\(\bar{X}_{t-1} = X_t = \emptyset\)

for all \(m\) in \([M]\) do:

\[x_t^{[m]} = \text{sample_motion_model}(u_t, x_{t-1}^{[m]}) \]
\[w_t^{[m]} = \text{measurement_model}(z_t, x_t^{[m]}) \]

\[\bar{X}_t = \bar{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle \]

end for

for all \(m\) in \([M]\) do:

draw \(i\) with probability \(\propto w_t^{[i]} \)

add \(x_t^{[i]}\) to \(X_t\)

end for

return \(X_t\)

Plug in motion and measurement models in the particle filter
Particle Filters
Sensor Information: Importance Sampling

\[Bel(x) \leftarrow \alpha p(z \mid x) Bel^{-}(x) \]
\[w \leftarrow \frac{\alpha p(z \mid x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z \mid x) \]
Robot Motion

\[Bel^-(x) \leftarrow \int p(x|u,x') Bel(x') \, dx' \]
Sensor Information: Importance Sampling

\[
Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^-(x)
\]

\[
w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^-(x)}{Bel^-(x)} = \alpha \ p(z \mid x)
\]
Robot Motion

\[Bel^-(x) \leftarrow \int p(x | u, x') Bel(x') \, dx' \]
Sample-based Localization (sonar)
Initial Distribution
After Incorporating Ten Ultrasound Scans
After Incorporating 65 Ultrasound Scans
Estimated Path
Using Ceiling Maps for Localization
Vision-based Localization

\[P(z|x) \]

\[h(x) \]
Under a Light

Measurement z: $P(z|x)$:
Next to a Light

Measurement z:

$P(z|x)$:
Elsewhere

Measurement \(z \):

\[P(z|x) : \]
Global Localization Using Vision
Limitations

• The approach described so far is able to
 • track the pose of a mobile robot and to
 • globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot problem)?

• How to handle localization errors/failures?
 • Particularly serious when the number of particles is small
Approaches

• Randomly insert samples
 • Why?
 • The robot can be teleported at any point in time
 • How many particles to add? With what distribution?
 • Add particles according to localization performance
 • Monitor the probability of sensor measurements $p(z_t | z_{1:t-1}, u_{1:t}, m)$
 • For particle filters: $p(z_t | z_{1:t-1}, u_{1:t}, m) \approx \frac{1}{M} \sum w_t^{[m]}$

• Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).
Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:
Kidnapping the Robot
Summary

- Particle filters are an implementation of recursive Bayesian filtering.
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.