
Spring 2022 Principles of Safe Autonomy
Lecture 4:

Basic Perception -> Edge Detection

Sayan Mitra
slides adapted from Svetlana Lazebnik

Autonomy

pipeline

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

GEM platform

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

Perception subsystem converts signals

from the environment into meaningful bits

Perception: EM to objects

Problem: Process electromagnetic radiation from

the environment to construct a model of the

world, so that the constructed model is close to

the real world

Challenging for computers: millions of years of

evolution

Ill-defined problem: impossibility of defining

meaning “car”, “bicycle”, etc.

Is this a bike?

Is this a car?

A practical perception pipeline in an AV

has many pieces

This architecture from a slide from M. James

of Toyota Research Institute, North America

Outline

• Linear filtering

• Edge detection

Motivation: Image denoising

• How can we reduce noise in a photograph?

Image representation

Images are represented as 2D arrays of pixels. Each pixel is

represented by (array of) value(s) representing its color.

Where [72 99 143] is the blue, green, and red values of that pixel.

We will work with grayscale images

Denote by img[i,j] (or f[i,j]) the value of the i,j-th pixel

What is filtering?

Modify the pixels in an image based on

some function of a local neighborhood of

the pixels.

Bright(img,k): for all i,j

img’[i][j] = k*img[i][j]

Shifting right by s Shift(img,s):

img’[k] = img[k-s]; img’[0]…img’[s-1] is undefined

Simplest: Linear filtering

replace each pixel by a linear combination of

neighbors

711
154
3510

7

some

function

• Let’s replace each pixel with a weighted

average of its neighborhood

• The weights are called the filter kernel

• What are the weights for the average of a

3x3 neighborhood?

Moving average

111

111

111

“box filter”

Source: D. Lowe

Convolution

[1,2][1,1]

[i,j]

3,33,23,1

2,32,22,1

1,31,21,1

image[i,j]

convolution

mask g[,]

f[i,j] = g[1,1] img[i-1,j-1] + g[1,2] img[i-1,j] + g[1,3] img[i-1,j+1]

+ g[2,1] img[i,j-1] + g[2,2] img[i,j] + g[2,3] img[i,j+1]

+ g[3,1] img[i+1,j-1] + g[3,2] img[i+1,j] + g[3,3] img[i+1,j+1]

Output or convolved image

f = g * img

Defining convolution

 −−=
lk

lkglnkmfnmgf
,

],[],[],)[(

f

• Let f be the image and g be the kernel. The

output of convolving f with g is denoted f * g.

Source: F. Durand

Convention:

kernel is “flipped”

For analysis we will work with 1D images

• Let f be the image and g be the kernel. The

output of convolving f with g is denoted f * g.

Source: F. Durand

(𝑓 ∗ 𝑔) 𝑚 = Σ𝑘𝑓 𝑚 − 𝑘 𝑔[𝑘]

Key properties: Prove the first two

• Shift invariance: same

behavior regardless of

pixel location:

filter(shift(f)) = shift(filter(f))

• Linearity:

filter(f1 + f2) =

filter(f1) + filter(f2)

• Theoretical result: any linear shift-invariant

operator can be represented as a convolution

Properties in more detail

• Commutative: a * b = b * a
• Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)

• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a

openCV: filter2D

Output image same size as input

Multi-channel: each channel is processed

independently

Extrapolation of border

Examples

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered

(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe

Practice with linear filters

Original

?
111

111

111

Source: D. Lowe

Practice with linear filters

Original

111

111

111

Blur (with a

box filter)

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000

- ?

(Note that filter sums to 1)

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000

-

Sharpening filter

- Accentuates differences

with local average

Source: D. Lowe

Sharpening

Source: D. Lowe

Sharpening

What does blurring take away?

–

=

sharpened

detail

=

smoothed (7x7)

Let’s add it back:

original

original detail

+

sharpened

Smoothing with box filter revisited

• What’s wrong with this picture?

• What’s the solution?

Source: D. Forsyth

Smoothing with box filter revisited

• What’s wrong with this picture?

• What’s the solution?

• To eliminate edge effects, weight contribution of

neighborhood pixels according to their closeness

to the center

“fuzzy blob”

Gaussian Kernel

Constant factor at front makes volume sum to 1 (can be ignored

when computing the filter values, as we should renormalize
weights to sum to 1 in any case)

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, = 1

Source: C. Rasmussen

Gaussian Kernel

Standard deviation : determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30

kernel

σ = 5 with 30 x 30

kernel

Choosing kernel width

The Gaussian function has infinite support, but

discrete filters use finite kernels

Source: K. Grauman

Choosing kernel width

Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Gaussian filters

• Remove high-frequency components from the

image (low-pass filter)

• Convolution with self is another Gaussian
• So can smooth with small- kernel, repeat, and get same

result as larger- kernel would have

• Convolving two times with Gaussian kernel with std. dev. σ

is same as convolving once with kernel with std. dev.

• Separable kernel
• Factors into product of two 1D Gaussians

• Discrete example:

Source: K. Grauman

2

 121

1

2

1

121

242

121

=

Separability of the Gaussian filter

Source: D. Lowe

Why is separability useful?

• Separability means that a 2D convolution can

be reduced to two 1D convolutions (one

along rows and one along columns)

• What is the complexity of filtering an n×n

image with an m×m kernel?

• O(n2 m2)

• What if the kernel is separable?

• O(n2 m)

Noise

• Salt and pepper noise:
contains random
occurrences of black
and white pixels

• Impulse noise:
contains random
occurrences of white
pixels

• Gaussian noise:
variations in intensity
drawn from a Gaussian
normal distribution

Source: S. Seitz

Reducing salt-and-pepper noise

What’s wrong with the results?

3x3 5x5 7x7

Alternative idea: Median filtering

• A median filter operates over a window by

selecting the median intensity in the window

• Is median filtering linear?

Source: K. Grauman

Median filter
Salt-and-pepper noise Median filtered

Source: M. Hebert

open cv: cv2.medianBlur (input, output,ksize)

Median filter

• Is median filtering linear?

• Let’s try filtering

1 1 1

1 1 2

2 2 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

+

0 0 0

0 1 0

0 0 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Edge detection

Winter in Kraków photographed by Marcin Ryczek

http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html

Edge detection

• Goal: Identify sudden changes (discontinuities)

in an image

• Intuitively, edges carry most of the semantic

and shape information from the image
• E.g., Lanes, traffic signs, cars

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Sources: D. Lowe and S. Seitz

Median filter

• What advantage does median filtering have

over Gaussian filtering?
• Robustness to outliers

Source: K. Grauman

Gaussian vs. median filtering

3x3 5x5 7x7

Gaussian

Median

Review: Image filtering

• Convolution

• Box vs. Gaussian filter

• Separability

• Median filter

Outline
• Filtering

• Convolution: Linearity, shift invariance, associativity, commutativity, …

• Kernels: Gaussian, box, …

• Separability of Gaussian

• Median filter

• Today: Edge detection

• Object recognition: Classification

Edge detection

An edge is a place of rapid change in the image

intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Derivatives with convolution

For 2D function f(x,y), the partial derivative w.r.t x is:

For discrete data, we can approximate using finite differences:

To implement the above as convolution, what would be

the associated filter?

),(),(
lim

),(

0

yxfyxf

x

yxf −+
=

→

1

),(),1(),(yxfyxf

x

yxf −+

Source: K. Grauman

Convolution

[1,2][1,1]

[i,j]
1-1

image[i,j]

convolution

mask g[,]

f[i,j] = -1.img[i,j-1] + 1. img[i,j]

Output or convolved image

f = g * img

Partial derivatives of an image

x

yxf

),(

y

yxf

),(

Which shows changes with respect to x?

-1

1
1

-1
-1 1

Finite difference filters

Other approximations of derivative filters exist:

Source: K. Grauman

The gradient points in the direction of most rapid increase

in intensity

Image gradient

The gradient of an image:

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude (norm)

• How does this direction relate to the direction of the edge?

Effects of noise

Consider a single row or column of the image

Where is the edge?

Source: S. Seitz

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d

f

g

f * g

)(gf
dx

d

Source: S. Seitz

• Differentiation is convolution, and convolution

is associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
=)(

Derivative theorem of convolution

g
dx

d
f

f

g
dx

d

Source: S. Seitz

Derivative of Gaussian filters

Which one finds horizontal/vertical edges?

x-direction y-direction

Derivative of Gaussian filters

Are these filters separable?

x-direction y-direction

Recall: Separability of the Gaussian filter

Source: D. Lowe

Smoothed derivative removes noise, but blurs edge

Also finds edges at different “scales”

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

Source: D. Forsyth

Review: Smoothing vs. derivative filters

Smoothing filters
• Gaussian: remove “high-frequency” components;

“low-pass” filter

• Can the values of a smoothing filter be negative?

• What should the values sum to?

– One: constant regions are not affected by the filter

Derivative filters
• Derivatives of Gaussian

• Can the values of a derivative filter be negative?

• What should the values sum to?

– Zero: no response in constant regions

Building an edge detector

original image Grad output

norm of the gradient

Building an edge detector

Thresholded norm of the gradient

How to turn

these thick

regions of

the gradient

into

curves?

Non-maximum suppression

• For each location q above threshold, check that the gradient

magnitude is higher than at neighbors p and r along the

direction of the gradient

• May need to interpolate to get the magnitudes at p and r

Non-maximum suppression

Another problem:

pixels along this

edge didn’t survive

thresholding

Hysteresis thresholding

Use a high threshold to start edge curves, and a

low threshold to continue them.

Source: Steve Seitz

Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold
Source: L. Fei-Fei

Recap: Canny edge detector

1. Compute x and y gradient images

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):

• Define two thresholds: low and high

• Use the high threshold to start edge curves and

the low threshold to continue them

opencv: canny(image,th1,th2)

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-

714, 1986.

http://ieeexplore.ieee.org/document/4767851/

Summary

• Convolution as translation invariant linear

operations on signals and images

• Definition of convolution and its properties

(associativity, commutativity, etc.)

• Artifacts of of hard-edge kernels

• Gaussian kernel, its definition and properties

(separability)

• Median filter, sharpening

• Derivatives as convolution (Sobel, etc.)

Sharpening

What does blurring take away?

–

=

sharpened

detail

=

smoothed (7x7)

Let’s add it back:

original

original detail

+

sharpened

Unsharp mask filter

Gaussian
unit impulse

Laplacian of Gaussian

))1(()1()(gefgffgfff −+=−+=−+

image blurred

image

unit impulse

(identity)

