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Autonomy 

pipeline

Control

Dynamical models of 
engine, powertrain, 
steering, tires, etc.

Decisions and 
planning

Programs and multi-
agent models of 

pedestrians, cars, 
etc. 

Perception

Programs for object 
detection, lane 
tracking, scene 

understanding, etc.

Sensing

Physics-based 
models of camera, 

LIDAR, RADAR, GPS, 
etc.

GEM platform



Control

Dynamical models of 
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detection, lane 
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Sensing
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Perception subsystem converts signals 

from the environment into meaningful bits



Perception: EM to objects

Problem: Process electromagnetic radiation from 

the environment to construct a model of the 

world, so that the constructed model is close to 

the real world

Challenging for computers: millions of years of 

evolution

Ill-defined problem: impossibility of defining 

meaning “car”, “bicycle”, etc. 

Is this a bike? 

Is this a car? 



A practical perception pipeline in an AV 

has many pieces

This architecture from a slide from M. James

of Toyota Research Institute, North America



Outline

• Linear filtering 

• Edge detection



Motivation: Image denoising

• How can we reduce noise in a photograph?



Image representation

Images are represented as 2D arrays of pixels. Each pixel is 

represented by (array of) value(s) representing its color.

Where [72 99 143] is the blue, green, and red values of that pixel.

We will work with grayscale images

Denote by img[i,j] (or f[i,j]) the value of the i,j-th pixel 



What is filtering?

Modify the pixels in an image based on

some function of a local neighborhood of

the pixels.

Bright(img,k): for all i,j

img’[i][j] = k*img[i][j]

Shifting right by s Shift(img,s): 

img’[k] = img[k-s]; img’[0]…img’[s-1] is undefined

Simplest: Linear filtering

replace each pixel by a linear combination of 

neighbors
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• Let’s replace each pixel with a weighted

average of its neighborhood

• The weights are called the filter kernel

• What are the weights for the average of a 

3x3 neighborhood?

Moving average

111

111

111

“box filter”

Source: D. Lowe



Convolution

[1,2][1,1]

[i,j]

3,33,23,1

2,32,22,1

1,31,21,1

image[i,j]

convolution 

mask g[,]

f[i,j] = g[1,1] img[i-1,j-1]  + g[1,2] img[i-1,j] + g[1,3] img[i-1,j+1]

+   g[2,1] img[i,j-1] + g[2,2] img[i,j]           + g[2,3] img[i,j+1]

+ g[3,1] img[i+1,j-1] + g[3,2] img[i+1,j] + g[3,3] img[i+1,j+1]

Output or convolved image 

f = g * img



Defining convolution
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• Let f be the image and g be the kernel. The 

output of convolving f with g is denoted f * g.

Source: F. Durand

Convention: 

kernel is “flipped”



For analysis we will work with 1D images 

• Let f be the image and g be the kernel. The 

output of convolving f with g is denoted f * g.

Source: F. Durand

(𝑓 ∗ 𝑔) 𝑚 = Σ𝑘𝑓 𝑚 − 𝑘 𝑔[𝑘]



Key properties: Prove the first two

• Shift invariance: same 

behavior regardless of 

pixel location:

filter(shift(f)) = shift(filter(f))

• Linearity:

filter(f1 + f2) = 

filter(f1) + filter(f2)

• Theoretical result: any linear shift-invariant 

operator can be represented as a convolution



Properties in more detail

• Commutative: a * b = b * a
• Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)

• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a



openCV: filter2D

Output image same size as input

Multi-channel: each channel is processed 

independently

Extrapolation of border

Examples



Practice with linear filters

000

010

000

Original

?

Source: D. Lowe



Practice with linear filters

000

010

000

Original Filtered 

(no change)

Source: D. Lowe



Practice with linear filters

000

100

000

Original

?

Source: D. Lowe



Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Source: D. Lowe



Practice with linear filters

Original

?
111

111

111

Source: D. Lowe



Practice with linear filters

Original

111

111

111

Blur (with a

box filter)

Source: D. Lowe



Practice with linear filters

Original

111
111
111

000
020
000

- ?

(Note that filter sums to 1)

Source: D. Lowe



Practice with linear filters

Original

111
111
111

000
020
000

-

Sharpening filter

- Accentuates differences 

with local average

Source: D. Lowe



Sharpening

Source: D. Lowe



Sharpening

What does blurring take away?

–

=

sharpened

detail

=

smoothed (7x7)

Let’s add it back:

original

original detail

+

sharpened



Smoothing with box filter revisited

• What’s wrong with this picture?

• What’s the solution?

Source: D. Forsyth



Smoothing with box filter revisited

• What’s wrong with this picture?

• What’s the solution?

• To eliminate edge effects, weight contribution of 

neighborhood pixels according to their closeness 

to the center

“fuzzy blob”



Gaussian Kernel

Constant factor at front makes volume sum to 1 (can be ignored

when computing the filter values, as we should renormalize
weights to sum to 1 in any case)

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Source: C. Rasmussen



Gaussian Kernel

Standard deviation : determines extent of smoothing

Source: K. Grauman

σ = 2 with 30 x 30 

kernel

σ = 5 with 30 x 30 

kernel



Choosing kernel width

The Gaussian function has infinite support, but

discrete filters use finite kernels

Source: K. Grauman



Choosing kernel width

Rule of thumb: set filter half-width to about 3σ



Gaussian vs. box filtering



Gaussian filters

• Remove high-frequency components from the 

image (low-pass filter)

• Convolution with self is another Gaussian
• So can smooth with small- kernel, repeat, and get same 

result as larger- kernel would have

• Convolving two times with Gaussian kernel with std. dev. σ

is same as convolving once with kernel with std. dev. 

• Separable kernel
• Factors into product of two 1D Gaussians

• Discrete example:

Source: K. Grauman
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Separability of the Gaussian filter

Source: D. Lowe



Why is separability useful?

• Separability means that a 2D convolution can 

be reduced to two 1D convolutions (one 

along rows and one along columns)

• What is the complexity of filtering an n×n

image with an m×m kernel? 

• O(n2 m2)

• What if the kernel is separable?

• O(n2 m)



Noise

• Salt and pepper noise:
contains random 
occurrences of black 
and white pixels

• Impulse noise: 
contains random 
occurrences of white 
pixels

• Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

Source: S. Seitz



Reducing salt-and-pepper noise

What’s wrong with the results?

3x3 5x5 7x7



Alternative idea: Median filtering

• A median filter operates over a window by 

selecting the median intensity in the window

• Is median filtering linear?

Source: K. Grauman



Median filter
Salt-and-pepper noise Median filtered

Source: M. Hebert

open cv: cv2.medianBlur (input, output,ksize)



Median filter

• Is median filtering linear?

• Let’s try filtering
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Edge detection

Winter in Kraków photographed by Marcin Ryczek

http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html


Edge detection

• Goal:  Identify sudden changes (discontinuities) 

in an image

• Intuitively, edges carry most of the semantic 

and shape information from the image
• E.g., Lanes, traffic signs, cars

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Sources: D. Lowe and S. Seitz



Median filter

• What advantage does median filtering have 

over Gaussian filtering?
• Robustness to outliers

Source: K. Grauman



Gaussian vs. median filtering

3x3 5x5 7x7

Gaussian

Median



Review: Image filtering

• Convolution

• Box vs. Gaussian filter

• Separability

• Median filter



Outline
• Filtering

• Convolution: Linearity, shift invariance, associativity, commutativity, …

• Kernels: Gaussian, box, … 

• Separability of Gaussian 

• Median filter

• Today: Edge detection

• Object recognition: Classification



Edge detection

An edge is a place of rapid change in the image 

intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative



Derivatives with convolution

For 2D function f(x,y), the partial derivative w.r.t x is:

For discrete data, we can approximate using finite differences:

To implement the above as convolution, what would be 

the associated filter?
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Source: K. Grauman



Convolution

[1,2][1,1]

[i,j]
1-1

image[i,j]

convolution 

mask g[,]

f[i,j] = -1.img[i,j-1]   + 1. img[i,j]

Output or convolved image 

f = g * img



Partial derivatives of an image
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Finite difference filters

Other approximations of derivative filters exist:

Source: K. Grauman



The gradient points in the direction of most rapid increase 

in intensity

Image gradient

The gradient of an image: 

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude (norm)

• How does this direction relate to the direction of the edge?



Effects of noise

Consider a single row or column of the image

Where is the edge?

Source: S. Seitz



Solution: smooth first

• To find edges, look for peaks in )( gf
dx

d


f

g

f * g

)( gf
dx

d


Source: S. Seitz



• Differentiation is convolution, and convolution 

is associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
= )(

Derivative theorem of convolution

g
dx

d
f 

f

g
dx

d

Source: S. Seitz



Derivative of Gaussian filters

Which one finds horizontal/vertical edges?

x-direction y-direction



Derivative of Gaussian filters

Are these filters separable?

x-direction y-direction



Recall: Separability of the Gaussian filter

Source: D. Lowe



Smoothed derivative removes noise, but blurs edge

Also finds edges at different “scales”

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

Source: D. Forsyth



Review: Smoothing vs. derivative filters

Smoothing filters
• Gaussian: remove “high-frequency” components; 

“low-pass” filter

• Can the values of a smoothing filter be negative?

• What should the values sum to?

– One: constant regions are not affected by the filter

Derivative filters
• Derivatives of Gaussian

• Can the values of a derivative filter be negative?

• What should the values sum to? 

– Zero: no response in constant regions



Building an edge detector

original image Grad output

norm of the gradient



Building an edge detector

Thresholded norm of the gradient

How to turn 

these thick 

regions of 

the gradient 

into 

curves?



Non-maximum suppression

• For each location q above threshold, check that the gradient 

magnitude is higher than at neighbors p and r along the 

direction of the gradient

• May need to interpolate to get the magnitudes at p and r



Non-maximum suppression

Another problem: 

pixels along this 

edge didn’t survive 

thresholding



Hysteresis thresholding

Use a high threshold to start edge curves, and a 

low threshold to continue them.

Source: Steve Seitz



Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold
Source: L. Fei-Fei



Recap: Canny edge detector

1. Compute x and y gradient images 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

• Thin wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):

• Define two thresholds: low and high

• Use the high threshold to start edge curves and 

the low threshold to continue them

opencv:   canny(image,th1,th2)

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-

714, 1986. 

http://ieeexplore.ieee.org/document/4767851/


Summary

• Convolution as translation invariant linear 

operations on signals and images

• Definition of convolution and its properties 

(associativity, commutativity, etc.) 

• Artifacts of of hard-edge kernels

• Gaussian kernel, its definition and properties 

(separability)

• Median filter, sharpening

• Derivatives as convolution (Sobel, etc.)



Sharpening

What does blurring take away?

–

=

sharpened

detail

=

smoothed (7x7)

Let’s add it back:

original

original detail

+

sharpened



Unsharp mask filter

Gaussian
unit impulse

Laplacian of Gaussian

))1(()1()( gefgffgfff −+=−+=−+ 

image blurred

image

unit impulse

(identity)


