
ECE 484: Principles of safe autonomy FALL 2022

Written by: ECE484 team HW1, MP1: Lane detection

Due Date: 9/23/2022

1 Introduction

In this assignment, you will apply computer vision techniques for lane detection. In first part, you will
answer 4 written questions related to concepts in computer vision. Then, you will implement a camera-
based lane detection module. The module will take a video stream in a format that is used in autonomous
systems as input, and it will produce annotated video with the lane area marked. We will split the video
into frames, and process it as an image in ROS (Robot Operating System). You will finish the functions
shown in Figure 4, one by one, to create the lane detection module.

For part 1, you will need to solve 4 written problems. For part 2, all your code should be in the file
studentVision.py and line_fit.py, and you will have to write a brief report mp1_<groupname>.pdf
. You will have to use functions from the Robot Operating System (ROS) [2] and you are encouraged to use
the OpenCV library [1]. This document gives you the first steps to get started on implementing the lane
detection module. You will have to take advantage of tutorials and documentations available online. Cite
all resources in your report. All the regulations for academic integrity and plagiarism spelled out in the
student code apply.

Learning objectives

• Edge detection using gradients

• Working with rosbags, Gazebo and Rviz

• Basic computer vision

• Working with OpenCV libraries

System requirements

• Ubuntu 20.04

• ROS Noetic

2 Homework Problems

Problem 1 Convolution (5 points) Prove that convolution is commutative. That is, given two functions
(or arrays), show that f ∗ g = g ∗ f . You may consider the functions to be one dimensional.

Problem 2 Filtering (3 points) Write down a 5 × 5 Gaussian derivative kernel in the y-direction. Does it
find vertical or horizontal edges? Is this filter separable? Explain your answer.

Problem 3 Median filter (2 points) Explain why the median filter is not linear. Provide a 2D example (not
from notes, slides, course reader).

1

https://studentcode.illinois.edu/article1/part4/1-402/

Problem 4 Filtering in OpenCV (5 points) Under mp1/src folder, you will find a script named
filter_main.py. Implement the filter_gaussian and filter_median filter functions and test their
performances on salt-and-pepper noise and Gaussian (White) noise. Which filter is better for filtering out
salt-and-pepper noise? Which filter is better for filtering out Gaussian (White) noise? Attach your result
images in the report and explain why you think the specific filters work better for certain noises? (You will
need to do source devel/setup.bash at this step. Refer to later sections for more detail)

(a) (b)

Figure 1: (a) Salt and Pepper Noise (b) Gaussian(White) Noise

3 Implementation

3.1 Problem Statement

For the implementation, you are going to implement a lane detection algorithm that will be applied to 2
scenarios. In scenario 1, you are given a video recorded on a real car moving on a high way.

Figure 2: Video recorded on a real car, resolution 1242× 375

In scenario 2, you will work with a GEM car model equipped with camera in Gazebo. The GEM car will
be moving along a track.

For both scenarios, your task is to use your algorithm to detect the lanes in the video or camera output.
Please note that several parameters (e.g. color channels, threshold of Sobel filter, points for perspective
transform) in the 2 scenarios are different, and you will need to figure them out separately.

3.2 Module Architecture

The building-block functions of a typical lane detection pipeline are shown in Figure 4 and also listed below.
However, in this MP you only need to implement some of the functions. The functions marked by * are not
required for you to implement, but you can experiment with them. Lane detection is a hard problem with
lots of ongoing research. This could be a component to explore more deeply in your project.

Camera calibration* Since all camera lenses will introduce some level of distortions in images, camera
calibration is needed before we start processing the image.

2

Figure 3: GEM car and its camera view in Gazebo

Figure 4: Lane detection module overview.

Perspective transform Convert the image into Bird’s Eye View.

Color threshold Threshold on color channels to find lane pixels. A typical way to do this is to covert the
image from RGB space to HLS space and threshold the S channel. There are also other ways to do this part.

Gradient threshold Run an edge detection on the image by applying a Sobel filter.

Combined binary image Combine the gradient threshold and color threshold image to get lane image.
We suggest applying a Region of Interest mask to get rid of irrelevant background pixels and apply morphol-
ogy function to remove noise.

Lane fitting Extract the coordinates of the centers of right and left lane from binary Bird’s Eye View image.
Fit the coordinates into two second order polynomials that represent right and left lane.

4 Development Instructions

All the python script you will need to modify are studentVision.py and line_fit.py which are
located in the following path:

cd [path −to −MP1−workspace]/ s r c /mp1/ s r c

3

https://en.wikipedia.org/wiki/Sobel_operator

4.1 Gradient threshold

In this section, we will implement a function which uses gradient threshold to detect interesting features
(e.g. lanes) in the image. The input image comes from callback function. The output shall be a binary image
that highlights the edges.

def gradient_threshold(self, img, thresh_min= 25, thresh_max= 100):
"""
Apply sobel edge detection on input image in x, y direction
"""
return binary_output

First we need to convert the colored image into grey scale image. For a gray scale image, each pixel is
represented by a uint8 number (0 to 255). The image gradient could emphasize the edges easily and hence
segregate the objects in the image from the background.

Figure 5: Image gradient. Left: Original image. Right: Gradient image.

Then we need to get the gradient on both x axis and y axis. Recall that we can use the Sobel operator to
approximate the first order derivative. The gradient is the result of a 2 dimensional convolution between
Sobel operators and original image. For this part, you will find Sobel function in OpenCV useful.

∇(f) = [
∂f

∂x
,
∂f

∂y
] (1)

Sx =


1 0 −1

2 0 −2

1 0 −1

 , Sy =


1 2 1

0 0 0

−1 −2 −1

 (2)

Gx = Sx ∗ I, Gy = Sy ∗ I (3)

Finally we need to convert each pixel into unit8, then apply the threshold to get binary image. If a pixel
has value between minimum and maximum threshold, we set the value of that pixel to be 1. Otherwise
set it to 0. The resulting binary image will be combined with the result from color threshold function and
passed to perspective transform.

4.2 Color threshold

In this section, we will implement a function which uses color threshold to detect interesting features (e.g.
lanes) in the image. The input image comes from callback function. The output shall be a binary image that
highlights the white and yellow color.

4

def color_threshold(self, img, thresh= (100, 255)):
"""
Convert RGB to HSL and threshold to binary image using S channel
"""

return binary_output

Besides gradient method, we can also utilize the information that lane markings in United States are
normally white or yellow. You can just filter out pixels other than white and yellow and what’s left are likely
to be on the lanes. You may use different color space (RGB, LAB, HSV, HSL, YUV...), different channels and
compare the effect. Some people prefer the RGB and HSL in the lane detection. Feel free to explore other
color spaces.

You need to first convert the input image from callback function into the desired color space. Then apply
threshold on certain channels to filter out pixels. In the final binary image, those pixels shall be set to 1 and
the rest pixels shall be set to 0.

Figure 6: Color threshold. Left: Original image. Right: Color threshold image.

4.3 Perspective transform

In this section, we will implement a function which converts the image to Bird’s eye view (looking down from
the top). This will give a geometric representation of the lanes on the 2D plane and the relative position
and heading of the vehicle between those lanes. This view is much more useful for controlling the vehicle,
than the first-person view. In the Bird’s eye view, the distance of pixels on the image will be proportional to
the actual distance, thus simplifies calculations in control modules in the future labs.

The input comes from combined binary image from color and gradient threshold. The output is the
image converted to Bird’s eye view. M and Minv are transformation matrix and inverse transformation
matrix. You don’t need to worry about them.

def perspective_transform(self, img, verbose= False):
"""
Get bird′s eye view from input image
"""

return warped_ img, M, Minv

5

During the perspective transform we wish to preserves collinearity (i.e., all points lying on a line initially
still lie on a line after transformation). The perspective transformation requires a 3-by-3 transformation
matrix.

Figure 7: Perspective transformation. Left: Original image. Right: Bird’s eye view image.

Here (x, y) and (u, v) are the coordinates of the same point in the coordinate systems of the original
perspective and new perspective. 

tu

tv

t

 =


a b c

d e f

g h 1



x

y

1

 (4)

To find the matrix, we need to find the location of 4 points on the original image and map the same 4
points on the Bird’s Eye View. Any 3 of those 4 points should not be on the same line. Put those 2 groups
of points into cv2.getPerspectiveTransform(), the output will be the transformation matrix. Pass the matrix
into cv2.warpPerspective() and we will have the warped Bird’s Eye View image.

4.4 Lane fitting

From the previous step, we get binary bird’s eye view images that separates the possible lane pixels and
background. We cut the image horizontally into several layers, and try to find the lane center on each of the
layers. The histogram method is used in this step. We calculate the histogram of pixels in left half and right
half of that horizontal layer. The place where possible pixels are most dense will be treated as centroid of
each lane. Finally fit the coordinates of those center of lanes to second order polynomial using np.polyfit()
function. Enhancement can be done by taking the average of N most recent frame polynomial coefficients.
If the lane fit fails, meaning the polynomials are unable to be solved, the program will print error message:
unable to detect lanes.

5 Testing Lane Detection

5.1 Video using rosbag

Messages with images, sensor data, etc., in ROS [2] can be recorded in a rosbag file. This is convenient as
the rosbags can be later replayed for testing and debugging the software modules we will create. Within a
rosbag, the data from different sources is organized by different rostopics.

Before we do anything on rosbag, we need to start the ROS master node:

roscore

6

For this MP, our input images are published by the rostopic camera/image_raw. We can play it back using
the commands rosbag info and rosbag play.

We have stored 3 rosbag in the bags directory: 0011_sync.bag, 0056_sync.bag, and 0484_sync.bag.
You can navigate to the directory by:

cd [path−to−MP1−workspace]/src/mp1/src/bags

First, execute the following command from the bag files directory to see the type of contents in the
rosbag.

rosbag info <your bagfile>

You should see something like:

path: 0011_sync.bag
version: 2.0
duration: 7.3s
start: Dec 31 1969 18:00:00.00 (0.00)
end: Dec 31 1969 18:00:07.30 (7.30)
size: 98.6 MB
messages: 74
compression: none [74/74 chunks]
types: sensor_msgs/Image [060021388200f6f0f447d0fcd9c64743]
topics: camera/image_raw 74 msgs : sensor_msgs/Image

This tells us topic names and types as well as the number (count) of each message topic contained in the
bag file.

The next step is to replay the bag file. In a terminal window run the following command in the directory
where the original bag files are stored:

rosbag play −l <your bagfile>

When playing the rosbag, the video will be converted into individual images that are sent out at a
certian frequency. We have provided a callback function. Every time a new image is published, the callback
function will be triggered, convert the image from ROS message format to OpenCV format and pass the
image into our pipeline.

5.2 GEM Model in Gazebo

For this MP, we also provide a simulation environment in Gazebo where a GEM car equipped with a camera
is moving along a race track.

Compile and source the package

7

python3 −m pip install scikit−image
source /opt/ros/noetic/setup.bash # Optionally you can add this line to your bashrc for your own convenience.
catkin_make
source devel/setup.bash

To launch Gazebo, you need to execute the following command:

roslaunch mp1 mp1.launch

To drive the vehicle along the track, execute python script:

python3 main.py

To reset the vehicle to original position, execute python script:

python3 reset.py

5.3 Test results

When code is finished, just run:

python3 studentVision.py

Rviz is a tool that helps us visualize the ROS messages of both the input and output of our module. It is
included by default when you install ROS. To start it just run:

rviz

You can find a "add" button on lower left corner. Click add -> By Topic. From the list of topics, choose
"/lane detection -> /annotated image -> /Image" (in Figure 8). A small window should pop out that
display the right and left line have been overlaid on the original video. Repeat the procedure to display
"/lane detection -> /Birdseye -> /Image". The result should be like in Figure 9.

6 Report

Each group should upload a short report with following questions answered.

Problem 5 (15 points) What are some interesting design choices you considered and executed in creating
different functions in your lane detection module? E.g. which color spaces did you use? how did you
determine the source points and destination points for perspective transform?

8

Figure 8: Choose Topics

Figure 9: Result in Rviz; left for rosbag scenario, right for GEM car scenario

Problem 6 (25 points) In order to detect the lanes in both scenarios, you will need to modify some param-
eters. Please list and compare all parameters you have modified and explain why altering them is helpful?

Problem 7 (25 points) Record 2 short videos of Rviz window and Gazebo to show that your code works
for both scenarios. You can either use screen recording software or smart phone to record.

9

Problem 8 (10 points) One of the provided rosbags (0484_sync.bag) is recorded in snowfall condition.
Your lane detector might encounter difficulties when trying to fit the lane in this specific case. If your lane
detector works, please report what techniques you used to accomplish that. If not, try to find the possible
reasons and explain them. (Note that you will not be evaluated by whether your model fits the lane in this
case; instead we will evaluate based on the reasoning you provide.)

Demo (10 points) You will need to demo your solution on both scenarios to the TAs during the lab demo.

7 Submission instructions

Problems 1-4 must be done individually (Homework 1). Write solutions to each problem in a file named
hw1_<netid>.pdf and upload the document in Canvas. Include your name and netid in the pdf. You may
discuss solutions with others, but do not use written notes from those discussions to write your answers. If
you use/read any material outside of those provided for this class to help grapple with the problem, you
should cite them explicitly.

Problems 5-8 can be done in groups of 2-4. Students need to take 2-3 short videos clearly showing
that their code works on both scenarios (rosbag videos and simulator environment) and answer other
questions. Note that, for the simulation environment, your video must show that your implementation can
detect lanes when car is moving. The videos can be uploaded to a website (YouTube, Vimeo, or Google
Drive with public access) and you need to include the link in the report. One member of each team will
upload the report mp1_<groupname>.pdf to Canvas. Please include the names and netids of all the group
members and cite any external resources you may have used in your solutions. Also, please upload your
code to some cloud storage like Google Drive, DropBox, or Box; create a sharable link and include it in your
report. Please only upload the src folder in a .zip file that contains code excluding rosbags.

References

[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[2] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

10

	1 Introduction
	2 Homework Problems
	3 Implementation
	3.1 Problem Statement
	3.2 Module Architecture

	4 Development Instructions
	4.1 Gradient threshold
	4.2 Color threshold
	4.3 Perspective transform
	4.4 Lane fitting

	5 Testing Lane Detection
	5.1 Video using rosbag
	5.2 GEM Model in Gazebo
	5.3 Test results

	6 Report
	7 Submission instructions

