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Principles of Sate Autonomy
ECE 484 Lecture 2: System Safety

Professor: Sayan Mitra
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Why is it difficult to reason about safety
ourely using data

“Testing can be used to show the presence of bugs, but never to show their absence!” --- Edsger W. Dijkstra

Because there are infinitely many executions and we can only test finitely many of those in any testing
algorithm

In a probabilistic sense also, purely using data to gain safety assurance is not practical

Data required to guarantee a probability of 107 fatality per hour of driving is proportional to its inverse, 10°
hours, 30 billion miles

To learn or extrapolate about all---infinitely many---executions from a finite sampling of executions, we need to
make some assumptions about the system. A collection of these assumptions defines a model

On a Formal Model of Safe and Scalable Self-driving Cars by
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017
(Responsibility Sensitive Safety)
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https://arxiv.org/pdf/1708.06374.pdf

Why is it difficult to reason about safety purely using data

Probability of a fatality caused by an accident per one hour of human driving is known to be 107°
Assume* that for AV this has to be 10~

Data required to guarantee a probability of 107° fatality per hour of driving is proportional to its inverse, 10°
hours, 30 billion miles

Multi-agent, open system, with human interactions => cannot be simulated offline to generate data
Any change is software means tests have to be rerun

To learn or extrapolate about all---infinitely many---executions from a finite sampling of executions, we need
to make some assumptions about the system. A collection of these assumptions defines a model

Different types of model (and data) for sensing, control, planning, and we need to understand how to analyze
and compose them

On a Formal Model of Safe and Scalable Self-driving Cars by
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017
(Responsibility Sensitive Safety)
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Roadmap

A simple class of models: automata

What are executions of automata: sequence of states

What are requirements?

Reachable states, why we care to compute and why that can be hard
Invariants as approximations of reachable states
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Example model of a bou

Write the model of a ball
dropped from height h

ncing ball

TV v

time
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Example model of a bou

Define states---the attributes of
the ball that completely define its
motion: height x and velocity v

Define state transitions---how the

ncing ball

state changes

IR

time



Example model of a bouncing ball

State variables

x: R

v: R h

State transitions

ifx<0&&v <0 m R
v = —Cc *xv time

elsev' = v > ‘

Y = v- g * delta arameters

x' = x + delta * v h, g, c, delta

Jupyter notebook https://github.com/PoPGRI/CodeACar22/blob/main/jupyter/control_notebook/main.ipynb

.
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Automata or State Machines

Definition. An automaton (also

called state machine) is a

mathematical model define by:
* Aset Q called the set of states
* Aset Qo € Q ofinitial states

e Aset D € Q X Q called the set of
transitions

1. Not necessarily finite state
2. Not necessarily deterministic

For the bouncing ball

Q = R?
Qo = i(h, 0)}
D =?

Is it deterministic?



Model for AEB

A car moving down a straight road has to detect any
pedestrian (or another car) in front of it and stop
before it collides.

AEB: Automatic Emergency Brakir

Not trivial

Today there is no enforced standard for testing AEB
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www.google.com » patents
US20110168504A1 - Emergency braking system - Google ...

Jump to Patent citations (18) - US4053026A * 1975-12-09 1977-10-11 Nissan Motor Co., Ltd. Logic
circuit for an automatic braking system for a motor ...

www.google.com » patents

US5170858A - Automatic braking apparatus with ultrasonic ...

An automatic braking apparatus includes: an ultrasonic wave emitter provided in a ... Info: Patent
citations (13); Cited by (7); Legal events; Similar documents; Priority and ... US652391281 2003-02-25
Autonomous emergency braking system.

www.google.com » patents

DE102004030994A1 - Brake assistant for motor vehicles ...

B60T7/22 Brake-action initiating means for automatic initiation; for initiation not ... Info: Patent citations

(3); Cited by (9); Legal events; Similar documents ... data from the environment sensor and then
initiates y braking.

www.google.com.pg » patents
Braking control system for vehicle - Google Patents

An automatic emergency braking system for a vehicle includes a forward viewing camera and a
control. At least in part responsive to processing of captured ..

www.automotiveworld.com » news-releases » toyota-ip... ¥
Toyota IP Solutions and IUPUI issue first commercial license ...

Jul 22, 2020 - ... and validation of automotive automatic emergency braking (AEB) ... and Director of
Patent Licensing for Toyota Motor North America. “We are ...

insurancenewsnet.com » oarticle » patent-application-tit... ~

Patent Application Titled “Multiple-Stage Collision Avoidance ...
Apr 3, 2019 - No assi for this patent n has been made. ... Automatic emergency braking
systems will similarly, also, soon be required for tractor ...
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“simple”+# Easy




MPO: Simulate model for testing

mpl.rviz* - RViz
@@ E mpl.rviz® - RViz

) Interact | %87 Move Camera c FocusCamera == Measure ¥ 2D Pose Estimate # 2D Nav Goal

B Raw Image

B Birds Eye View - Lidar

B Pedestrian Annotated

© Time

ROS Time: |45.29 | ROS Elapsed: |45.08 Wall Time: |598202866.23 | Wall Elapsed: |49.62

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options.

@ Publish Point

Experimental
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Model of Automatic Emergency Braking

Vio ™ V20—
State variables 5 % i
X1, X2: R = X109, X20 0 X10 distance (x) X20 ]
v,V R
State transitions Automaton model for AEB
v; = max(0,v; — aprare) Qo = {<x10' X207 ‘710,'720>}
else vy = vy * ¢ D =?

X; = X1+ vy
Xy = Xy + Vs

4 o
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Generalize model by adding uncertainty

Range of initial conditions x;: R € [x1o — 0.5,x1¢ + 0.5]

Range of braking force
Aprake = Choose [aq, a;]
v; = max(0,v; — aprake)

Noise in sensing distances ...

Frequency of updates
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Behaviors of automata

Definition. Given an automaton A = (Q, Qy, D) an execution is a
sequence of states & = qg, 91, g5, ... such that (1) go € Qo and (2) for

each i, (q;,qi4+1) € D.
For execution a, we denote the k" state as a (k)

An automaton is deterministic if it has (essentially) a single execution
-- Not very interesting because has no uncertainty
Generally, the set of executions of A is uncountably infinite.
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Requirements

Definition. A requirement is a statement about a system’s
behaviors.

Examples. “Ball never reaches a height above h”
Vit,x(t) <h

“Ball eventually sits on the ground at x = 0" 3t,x(t) = 0

“Car always maintains safe distance to pedestrian”
Vt,x,(t) —x(t) >2m

“Car never exceeds speed limit” ...

Safety requirements are statements that must always hold
(or never be violated)

Rules of the road ++




A picture for safety requirements

Safety requirements can be
equivalently seen as a set of unsafe
states that must always be avoided Unsafe states

“Ball never reaches a height above h” L0.0.
Vit,x(t) <h -
corresponding unsafe set >0
2.5 A
U = {{x,v)|x > h} € R? ool _

Exercise. Try to plot projections of the
unsafe states for AEB example.




Safety verification problem For any automaton

Definition. Given an automaton 4 = (Q, Qy, D) and a
safety requirement U € @, we have to decide whether V

execution a of A, Vk, a(k) & U?

| states Q

Invariant. I;

That is, does automaton A ever reach U ?

Reach 4(Qg)

How will you show that the ball never crosses h?




Reachable states

Definition. Given an automaton A = (Q, Q,, D) the set of reachable states of
A'is defined as Reach, = {q € Q |3 a, k, such that a(k) = q}.

A state is reachable if there is some execution that reaches it.

The safety verification problem can be restated as checking Reachy N U =

@?

For general automata, computing Reach, is hard (undecidable)

Invariant. I;

Reach
Notice, even if we can over-approximate Reach, that can be adequate. A(QO)

Definition. An invariant for A is any set of states that over-approximates

Reachy. Thatis, Reach, € I.

Q is an invariant, but it is not particularly useful.

.




A strategy for computing Reach,

Definition. Post,(S) ={q' € Q|3 q € S,(q',q) € D}

Set of all the states that can be reached from S in a single Reach,(Qo)

transition
Exercise. if S; € S,, Post,(S;) € Post,(S,) [Monotonicity]

Define Post{(S) = S PostX(S) = Post,(PostX=1(5))

Exercise*. Postjf (Q,) = set of states that are reachable after
k steps

If this process converges, then we could compute Reach,

4 o



For general automata, computing Reach, is hard (undecidable)
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Our strategy for safety verification

Find an invariant set of states I € Q of AsuchthatI NU = @
How to check thata I € Q is an invariant of A?

Theorem 1. Given automaton A = (Q, Qy, D) and a set of states I € Q if:
(Start condition) Qg € I, and
(Transition closure) Post(I) € I

then I is an invariant of A. That is Reach_4(0) < I.
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Theorem 1. Given automaton A = (Q, Qy, D) and a set of states I € Q if:
(Start condition) Qo € I, and
(Transition closure) Post(I) € I

then I is an invariant of A. That is Reach_4(©) € I.

Proof. Consider any reachable state g € Reachy. We will have to show that g

is also in I. By the definition of a reachable state, there exists an execution
a of A such thata(k) =q.

We proceed by induction on the length a

For the base case, a consists of a single starting state @« = g € Q,, because
executions always start at Q4. And by the Start condition, g € I.

For the inductive step, @ = a’q where a' is the prefix or a shorter execution.
By the induction hypothesis, we know that the last state of a’say q' € I.

Invoking Transition condition on q" — g we obtain g € I. QED



State variables
x: R
Back to the bouncing ball VR

State transitions

I; = {{x,v)|x < h} fx<08&8&v<0

Can we show that it is an invariant using the Theorem 17 vi=cxv
elsev' =v

We have to check v = v- g * delta
x = x + delta * v

(Start condition) Qo € I;. Initially x = h < hand v = 0 but does

not matter \checks out

(Transition closure) Post(l) € I,
For any state with x < h, can we show thatx' < h?

NO! If the velocity is positive then x" > x, and we cannot show the
invariant

Theorem 1 is a sufficient condition for proving invariance
(not necessary)

o



Back to the bouncing ball
L={x,v)|v+tx=h}
Can we show that it is an invariant using the Theorem 17

We have to check

(Start condition) Qg € I;. Initidllyv+x =0+ h =h

(Transition closure) Post(l) € I;
For any state with v + x = h, can we show that v’ + x' = h ?

Two cases:

fx >0thenx’'+v' =(x+v)+v—g
Theorem 1 is a sufficient condition for proving invariance

(not necessary)

o

State variables

x: R

v: R

State transitions
ifx<0&&v <0
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Roadmap

A simple class of models: automata.

What are executions of automata: sequence of states

What are requirements?

Reachable states, why we care to compute and why that can be hard
Invariants as approximations of reachable states
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“All models are wrong, some are usefu
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Wrong and useless models BLACK SWAN
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HEGHEY IMPROEAIELE

MNassim Micholas Taleb

FIGURE 4. A turkey using “evidence”; unaware of Thanksgiving, it is making “rigorous” future
projections based on the past. Credit: George Nasr

WA



Baked-in Assumptions in our example

Perception.
Sensor detects obstacle iff distance d < Dgppse
No false positives, negatives, probabilities

Pedestrian is known to be moving with constant e
velocity from initial position. This will be used in F"
the safety analysis, but not in the vehicle's >

automatic braking algorithm

No sensing-computation-actuation delay.

The time step in which d < Dggpse becomes
smaller is exactly when the velocity starts to
decrease

1.2.1.2 Vertical Detection Area
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Baked-in Assumptions (continued)

Mechanical or Dynamical assumptions
Vehicle and pedestrian moving in 1-D lane.
Does not go backwards.
Perfect discrete kinematic model for velocity and acceleration.

Nature of time

Discrete steps. Each execution of the above function models
advancement of time by 1 step. If 1 step = 1 second, x;(t + 1) =
x1(t) + vy(t).1

We cannot talk about what happens between [t, t+1]
Atomic steps. 1 step = complete (atomic) execution of the program.

We cannot directly talk about the states visited after partial execution of
program
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summary

Absolute safety checking boils down to showing that none of the executions of
the automaton reaches an unsafe set U

To reason about all executions of we have to work with infinite sets of states
One way to compute infinite sets is using the Post operator
But, computing all executions for unbounded time can be hard

If we can guess an invariant satisfying conditions of Proposition 1.1, that can
give a shortcut for proving safety

The inavariant may contain important information about conserved quantities,
and thus, may tell us why the system is safe, and not just that it is so

Mind the gap between model and reality
Next. Application of invariants in braking example



