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Why is it difficult to reason about safety 
purely using data

“Testing can be used to show the presence of bugs, but never to show their absence!’’ --- Edsger W. Dijkstra

Because there are infinitely many executions and we can only test finitely many of those in any testing 
algorithm

In a probabilistic sense also, purely using data to gain safety assurance is not practical

Data required to guarantee a probability of 10−9 fatality per hour of driving is proportional to its inverse, 109 

hours, 30 billion miles

To learn or extrapolate about all---infinitely many---executions from a finite sampling of  executions, we need to 
make some assumptions about the system. A collection of these assumptions defines a model

On a Formal Model of Safe and Scalable Self-driving Cars by 
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017 
(Responsibility Sensitive Safety)

https://arxiv.org/pdf/1708.06374.pdf


Why is it difficult to reason about safety purely using data

Probability of a fatality caused by an accident per one hour of human driving is known to be 10−6

Assume* that for AV this has to be 10−9

Data required to guarantee a probability of 10−9 fatality per hour of driving is proportional to its inverse, 109 

hours, 30 billion miles

Multi-agent, open system, with human interactions => cannot be simulated offline to generate data  

Any change is software means tests have to be rerun

To learn or extrapolate about all---infinitely many---executions from a finite sampling of  executions, we need 
to make some assumptions about the system. A collection of these assumptions defines a model

Different types of model (and data) for sensing, control, planning, and we need to understand how to analyze 
and compose them

On a Formal Model of Safe and Scalable Self-driving Cars by 
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017 
(Responsibility Sensitive Safety)

https://arxiv.org/pdf/1708.06374.pdf


Roadmap

► A simple class of models: automata

►What are executions of automata: sequence of states

►What are requirements?

►Reachable states, why we care to compute and why that can be hard

► Invariants as approximations of reachable states



Example model of a bouncing ball

►Write the model of a ball 
dropped from height h

time

h



Example model of a bouncing ball

1. Define states---the attributes of 
the ball that completely define its 
motion: height x and velocity v

2. Define state transitions---how the 
state changes

time

h



Example model of a bouncing ball

State variables
𝑥:ℝ
𝑣:ℝ

State transitions

if 𝑥 ≤ 0 && 𝑣 ≤ 0

𝑣′ = −𝑐 ∗ 𝑣

else 𝑣′ = 𝑣
𝑣’ = 𝑣 – 𝑔 ∗ 𝑑𝑒𝑙𝑡𝑎
𝑥’ = 𝑥 + 𝑑𝑒𝑙𝑡𝑎 ∗ 𝑣

time

h

Jupyter notebook https://github.com/PoPGRI/CodeACar22/blob/main/jupyter/control_notebook/main.ipynb

Parameters
h, g, c, delta



Automata or State Machines

Definition. An automaton (also 
called state machine) is a 
mathematical model define by:

• A set 𝑄 called the set of states

• A set 𝑄0 ⊆ 𝑄 of initial states

• A set D ⊆ 𝑄 × 𝑄 called the set of 
transitions 

1. Not necessarily finite state

2. Not necessarily deterministic

For the bouncing ball
𝑄 = ℝ2

𝑄0 = ℎ, 0

𝐷 =?

Is it deterministic? 



Model for AEB
A car moving down a straight road has to detect any 
pedestrian (or another car) in front of it and stop 
before it collides.

AEB: Automatic Emergency Braking

Not trivial

Today there is no enforced standard for testing AEB



“simple”≠ Easy



MP0: Simulate model for testing



Model of Automatic Emergency Braking

State variables

𝑥1, 𝑥2: ℝ = 𝑥10, 𝑥20

𝑣1, 𝑣2: ℝ

State transitions

If 𝑥2 − 𝑥1 ≤ 𝑑𝑠𝑎𝑓𝑒

𝑣1
′ = max 0, 𝑣1 − 𝑎𝑏𝑟𝑎𝑘𝑒

else 𝑣1
′ = 𝑣1 ∗ 𝑐

𝑥1
′ = 𝑥1 + 𝑣1

𝑥2
′ = 𝑥2 + 𝑣2

distance (x)𝑥10 𝑥200

𝑣10 𝑣20

Automaton model for AEB 
𝑄 = ℝ4

𝑄0 = 𝑥10, 𝑥20, 𝑣10,𝑣20

𝐷 =?



Generalize model by adding uncertainty

►Range of initial conditions 𝑥1: ℝ ∈ [𝑥10 − 0.5, 𝑥10 + 0.5]

►Range of braking force 
► 𝑎𝑏𝑟𝑎𝑘𝑒 = 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎1, 𝑎2
► 𝑣1

′ = max 0, 𝑣1 − 𝑎𝑏𝑟𝑎𝑘𝑒

►Noise in sensing distances … 

►Frequency of updates



Behaviors of automata 

Definition. Given an automaton 𝐴 = ⟨𝑄, 𝑄0, 𝐷⟩ an execution is a 
sequence of states 𝛼 = 𝑞0, 𝑞1, 𝑞2, … such that (1) 𝑞0 ∈ 𝑄0 and (2) for 
each 𝑖, 𝑞𝑖 , 𝑞𝑖+1 ∈ 𝐷.

For execution 𝛼, we denote the 𝑘𝑡ℎ state as 𝛼(𝑘)

An automaton is deterministic if it has (essentially) a single execution

-- Not very interesting because has no uncertainty

Generally, the set of executions of 𝐴 is uncountably infinite. 



Requirements
Definition. A requirement is a statement about a system’s 
behaviors. 

►Examples. “Ball never reaches a height above  h” 
∀ 𝑡, 𝑥 𝑡 ≤ ℎ

► “Ball eventually sits on the ground at x = 0” ∃𝑡, 𝑥 𝑡 = 0

► “Car always maintains safe distance to pedestrian” 
∀𝑡, 𝑥2 𝑡 − 𝑥1 𝑡 > 2 𝑚

► “Car never exceeds speed limit” … 

Safety requirements are statements that must always hold 
(or never be violated)

Rules of the road ++ 



A picture for safety requirements

Safety requirements can be 
equivalently seen as a set of unsafe 
states that must always be avoided

“Ball never reaches a height above  h” 
∀ 𝑡, 𝑥 𝑡 ≤ ℎ

corresponding unsafe set 

𝑈 = 𝑥, 𝑣 𝑥 > ℎ} ⊆ ℝ2

Exercise. Try to plot projections of the 
unsafe states for AEB example.

𝑸𝟎
Unsafe states



U
n

safe 
states

Safety verification problem

Definition. Given an automaton 𝐴 = ⟨𝑄, 𝑄0, 𝐷⟩ and a 
safety requirement U ⊆ 𝑄, we have to decide whether ∀
execution 𝛼 of 𝐴, ∀𝑘, 𝛼 𝑘 ∉ 𝑈?

That is, does automaton 𝐴 ever reach 𝑈 ?

How will you show that the ball never crosses h?

All states 𝑄

Invariant. 𝐼1

𝑅𝑒𝑎𝑐ℎ𝒜(𝑄0)

𝑸𝟎

For any automaton 



Reachable states

Definition. Given an automaton 𝐴 = ⟨𝑄, 𝑄0, 𝐷⟩ the set of reachable states of 
𝐴 is defined as Reach𝐴 = 𝑞 ∈ 𝑄 ∃ 𝛼, 𝑘, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼(𝑘) = 𝑞}.

A state is reachable if there is some execution that reaches it.

The safety verification problem can be restated as checking  Reach𝐴 ∩ 𝑈 =
∅?

For general automata, computing 𝑅𝑒𝑎𝑐ℎ𝐴 is hard (undecidable)

Notice, even if we can over-approximate Reach𝐴 that can be adequate.

Definition. An invariant for 𝐴 is any set of states that over-approximates 
Reach𝐴. That is, Reach𝐴 ⊆ 𝐼.

𝑄 is an invariant, but it is not particularly useful.

U
n

safe 
states

All states 𝑄

Invariant. 𝐼1

𝑅𝑒𝑎𝑐ℎ𝐴(𝑄0)

𝑸𝟎



A strategy for computing 𝑅𝑒𝑎𝑐ℎ𝐴

Definition. 𝑃𝑜𝑠𝑡𝐴 𝑆 = 𝑞′ ∈ 𝑄 ∃ 𝑞 ∈ 𝑆, 𝑞′, 𝑞 ∈ 𝐷}

Set of all the states that can be reached from S in a single 

transition

Exercise. if S1 ⊆ 𝑆2, 𝑃𝑜𝑠𝑡𝐴 𝑆1 ⊆ 𝑃𝑜𝑠𝑡𝐴(𝑆2) [Monotonicity]

Define 𝑃𝑜𝑠𝑡𝐴
0 𝑆 = 𝑆 𝑃𝑜𝑠𝑡𝐴

𝑘 𝑆 = 𝑃𝑜𝑠𝑡𝐴(𝑃𝑜𝑠𝑡𝐴
𝑘−1 𝑆 )

Exercise*. 𝑃𝑜𝑠𝑡𝐴
𝑘 𝑄0 = set of states that are reachable after 

k steps

If this process converges, then we could compute 𝑅𝑒𝑎𝑐ℎ𝐴

𝑅𝑒𝑎𝑐ℎ𝐴(𝑄0)

𝑸𝟎
𝑷𝒐𝒔𝒕(𝑸𝟎)𝑷𝒐𝒔𝒕𝟐(𝑸𝟎)
𝑷𝒐𝒔𝒕𝟑 𝑸𝟎



For general automata, computing 𝑅𝑒𝑎𝑐ℎ𝐴 is hard (undecidable)



Our strategy for safety verification

►Find an invariant set of states 𝐼 ⊆ 𝑄 of 𝐴 such that 𝐼 ∩ 𝑈 = ∅

►How to check that a 𝐼 ⊆ 𝑄 is an invariant of 𝐴?

Theorem 1. Given automaton 𝐴 = 〈𝑄, 𝑄0, 𝒟〉 and a set of states 𝐼 ⊆ 𝑄 if: 

► (Start condition) Q0 ⊆ 𝐼, and

► (Transition closure) Post I ⊆ 𝐼

then 𝐼 is an invariant of 𝐴. That is 𝑅𝑒𝑎𝑐ℎ𝒜 Θ ⊆ 𝐼.



Proof. Consider any reachable state 𝑞 ∈ 𝑅𝑒𝑎𝑐ℎ𝐴.  We will have to show that 𝑞
is also in 𝐼. By the definition of a reachable state, there exists an execution 
𝛼 of 𝒜 such that 𝛼(𝑘) = 𝑞. 

We proceed by induction on the length 𝛼

For the base case, 𝛼 consists of a single starting state 𝛼 = 𝑞 ∈ Q0, because 
executions always start at Q0. And by the Start condition, 𝑞 ∈ 𝐼. 

For the inductive step, 𝛼 = 𝛼′𝑞 where 𝛼′ is the prefix or a shorter execution. 
By the induction hypothesis, we know that the last state of  𝛼′𝑠𝑎𝑦 𝑞′ ∈ 𝐼. 

Invoking Transition condition on 𝑞′ → 𝑞 we obtain 𝑞 ∈ 𝐼. QED

Theorem 1. Given automaton 𝐴 = 〈𝑄, 𝑄0, 𝒟〉 and a set of states 𝐼 ⊆ 𝑄 if: 

► (Start condition) Q0 ⊆ 𝐼, and

► (Transition closure) Post I ⊆ 𝐼

then 𝐼 is an invariant of 𝐴. That is 𝑅𝑒𝑎𝑐ℎ𝒜 Θ ⊆ 𝐼.



Back to the bouncing ball
► 𝐼1 = 𝑥, 𝑣 𝑥 ≤ ℎ}

►Can we show that it is an invariant using the Theorem 1? 

►We have to check 
► (Start condition) Q0 ⊆ 𝐼1. Initially 𝑥 = ℎ ≤ ℎ and 𝑣 = 0 but does 

not matter \checks out

► (Transition closure) Post I ⊆ 𝐼1
► For any state with 𝑥 ≤ ℎ, can we show that 𝑥′ ≤ ℎ ?  

► NO! If the velocity is positive then 𝑥′ > 𝑥, and we cannot show the 
invariant 

►Theorem 1 is a sufficient condition for proving invariance 
(not necessary)

State variables
𝑥:ℝ
𝑣:ℝ

State transitions

if 𝑥 ≤ 0 && 𝑣 ≤ 0

𝑣′ = −𝑐 ∗ 𝑣

else 𝑣′ = 𝑣
𝑣’ = 𝑣 – 𝑔 ∗ 𝑑𝑒𝑙𝑡𝑎
𝑥’ = 𝑥 + 𝑑𝑒𝑙𝑡𝑎 ∗ 𝑣



Back to the bouncing ball
► 𝐼1 = 𝑥, 𝑣 𝑣 + 𝑥 = ℎ }

►Can we show that it is an invariant using the Theorem 1? 

►We have to check 
► (Start condition) Q0 ⊆ 𝐼1. Initially 𝑣 + 𝑥 = 0 + ℎ = ℎ

► (Transition closure) Post I ⊆ 𝐼1
► For any state with 𝑣 + 𝑥 = ℎ, can we show that 𝑣′ + 𝑥′ = ℎ ?  

► Two cases: 

► If 𝑥 > 0 then 𝑥’ + 𝑣′ = 𝑥 + 𝑣′ + 𝑣 − 𝑔

►Theorem 1 is a sufficient condition for proving invariance 
(not necessary)

State variables
𝑥:ℝ
𝑣:ℝ

State transitions

if 𝑥 ≤ 0 && 𝑣 ≤ 0

𝑣′ = −𝑣

𝑥’ = 𝑣′

else 

𝑣’ = 𝑣 – 𝑔
𝑥’ = 𝑥 + 𝑣′



Roadmap

► A simple class of models: automata.

►What are executions of automata: sequence of states

►What are requirements?

►Reachable states, why we care to compute and why that can be hard

► Invariants as approximations of reachable states



“All models are wrong, some are useful.”



Wrong and useless models



Baked-in Assumptions in our example

►Perception. 
► Sensor detects obstacle iff distance 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒
► No false positives, negatives, probabilities

► Pedestrian is known to be moving with constant 
velocity from initial position. This will be used in 
the safety analysis, but not in the vehicle's 
automatic braking algorithm

►No sensing-computation-actuation delay. 
► The time step in which 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒 becomes 

smaller is exactly when the velocity starts to 
decrease



Baked-in Assumptions (continued)

► Mechanical or Dynamical assumptions
► Vehicle and pedestrian moving in 1-D lane.

► Does not go backwards.

► Perfect discrete kinematic model for velocity and acceleration.

► Nature of time
► Discrete steps. Each execution of the above function models 

advancement of time by 1 step. If 1 step = 1 second, 𝑥1 𝑡 + 1 =
𝑥1 𝑡 + 𝑣1 𝑡 . 1
► We cannot talk about what happens between [t, t+1] 

► Atomic steps. 1 step = complete (atomic) execution of the program. 
► We cannot directly talk about the states visited after partial execution of 

program

{⟨� , � ⟨}

{ ℓ }
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Summary

► Absolute safety checking boils down to showing that none of the executions of 
the automaton reaches an unsafe set U

► To reason about all executions of we have to work with infinite sets of states
► One way to compute infinite sets is using the Post operator
► But, computing all executions for unbounded time can be hard
► If we can guess an invariant satisfying conditions of Proposition 1.1, that can 

give a shortcut for proving safety
► The inavariant may contain important information about conserved quantities, 

and thus, may tell us why the system is safe, and not just that it is so
► Mind the gap between model and reality
► Next. Application of invariants in braking example


