Camera door open
closed
Robot push
do. nothing
Robot estimating state of adoor w. Camera
initially robot knows nothing
Prior dishibution
Xo RV state of the door at t=0
belief bel (
$$x_0 = 0$$
 pen) = $\frac{1}{2}$
bel ($x_0 = closed$) = $\frac{1}{2}$
Measurement model / Sensor
P($2_t = sense \ open$ | $x_t = open$) = 0.6
P($2_t = sense \ open$ | $x_t = closed$) = 0.2
P($2_t = sense \ open$ | $x_t = closed$) = 0.2
P($2_t = sense \ open$ | $x_t = closed$) = 0.3
Motion model / mathipulator
P($x_t = open$ | $x_{t-1} = open$ U_t = push) = 1
P($closed$ | $open$ Push) = 0.9
P($closed$ | $closed$ Push) = 0.2

P(
$$\chi_t = open$$
 | $\chi_{t-1} = open$ $U_t = do_nothing$) = 1
P(χ_t closed | χ_{t-1} closed $U_t = do_no$) = 1
P(closed | $open - - - = 0$
P(open | closed - -) = 0
Push ore closed - -) = 0
Upush ore closed - -) = 0
How to calculate the posterior distribution?
bel($\chi_0 = open$) = $1/2$ = bel($\chi_0 = closed$)
Prediction (Motion) Correction (Measurement)
bel(χ_1) = $\sum_{\chi_0}^{-7} P(\chi_1 | \mathcal{U}_1, \chi_0)$ bel(χ_0)
= $P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)
 $+ P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)
 $+ P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)
 $+ P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)
 $+ P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)
 $+ P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)
 $+ P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)
 $+ P(\chi_1 | \mathcal{U}_1 = do_no | \chi_0 = is_open$) bel($\chi_0 = is_open$)

bel
$$(x_1 = is_cbosed) = 0 + 1.\frac{1}{2} = \frac{1}{2}$$

bel $(x_1) = \eta \quad P(z_1 = sense_open \mid x_1) \quad \overline{bel}(x_1)$
bel $(x_1 = is_open) = \eta \quad 0.6 \quad \frac{1}{2} = \eta \quad 0.3 = \frac{3}{4}$

bel
$$(\chi_1 = is \text{ closed}) = \eta P(Z_1 = \text{sense-open}) \chi_1 = is \text{ closed})$$

bel $(\chi_1 = \text{closed})$
 $= \eta O(2 \cdot 1/2) = \eta O(1) = 1/q$

bel (X, = is.open) = 3/4 bel (X, = is.closed)=1/4

 $U_2 = Push$ $Z_2 = sense_open$

 $bel(x_2 = is_open) = 0.983$ $bel(x_2 = is_closed) = 0.017$