Filtering → iteratively updating beliefs
\[\text{bel}(t) = P(x | z_{1:t}, u_{1:t}) \]

- Discrete distributions can be represented (and updated) as histograms
- What about continuous distributions

→ Particle filter

Represent \(\text{bel}(x_t) \) by a set of random state samples

Example

\[
P(x)
\]

Particle samples representing Gaussian

\[
P(y)
\]

\(\text{Gaussian} \)

Parametric representation \(\sigma, M \)

(Recall 24)
Advantages

Non-parametric representation

1. Can represent a much broader set of distributions

2. Can easily implement non-linear transformations of the distribution, e.g., operations needed for the predict & correct stages of the filter.

Def. The samples of the belief distribution are called particles.

We denote M particles as

$$x_t^{[1]}, x_t^{[2]}, \ldots, x_t^{[M]} \in \mathbb{R}^n$$

Together $X_t = \{x_t^{[1]}, \ldots, x_t^{[M]}\}$

Each $x_t^{[m]}$ is a concrete state at time t with $1 \leq m \leq M$.
For example, for the rear wheel vehicle model:
\[x_t^{[m]} = \langle \text{pos}_x, \text{pos}_y, \theta \rangle \]
\[M \approx 100 \]

In representing \(\text{bel}(x_t) \) with \(X_t \), ideally \(x_t^{[m]} \) should be included in \(X_t \) with probability proportional to \(\text{bel}(x_t) = P(x_{t+1} \ldots) \)

This will hold asymptotically as \(M \to \infty \)
Basic Particle Filtering algorithm

- Same structure as Bayes filter
 - input: bet \((x_{t+1}) \leftrightarrow X_{t-1} \)
 - control: \(u_t \)
 - measurement: \(z_t \)
 - output: bet \((x_t) \leftrightarrow X_t \)
 - prediction from bet \((x_{t-1}) \) using \(u_t \)
 - correction from \(\text{bel}(x_t) \) using \(z_t \)

\[X_t = x_t^{[1]}, x_t^{[2]}, \ldots, x_t^{[M]} \] particles

Algorithm Particle_filter\((X_{t-1}, u_t, z_t):\)

\[\hat{X}_{t-1} = X_t = \emptyset \]

for all \(m \) in \([M]\) do:

- importance sample \(x_t^{[m]} \sim \text{p} (x_t | u_t, x_t^{[m]}) \)

- factor \(w_t^{[m]} = \text{p} \left(z_t | x_t^{[m]} \right) \)

- \(\text{bel} \)

\[\bar{X}_t = \bar{X}_t + \left(x_t^{[m]}, w_t^{[m]} \right) \]

end for

for all \(m \) in \([M]\) do:

- draw \(i \) with probability \(\propto w_t^{[i]} \)

- add \(x_t^{[i]} \) to \(X_t \)

end for

return \(X_t \)
Resampling step

“Survival of the fittest” based on measurement

We want to sample particles from \(\text{bel}(x_t) \)

But we only have samples from \(\text{bel}(x_t) \)

More generally we want to sample from a distribution \(f \)

but we can only sample from another distribution \(g \)

How?

\[
E_f [I(x \in A)] = \int f(x) I(x \in A) \, dx
= \int \frac{f(x)}{g(x)} \cdot g(x) I(x \in A) \, dx
= E_g [\omega(x) I(x \in A)]
\]

Provided \(f(x) > 0 \Rightarrow g(x) > 0 \)
Samples from $f_{\text{bel}(x_t)}$

Samples from $g_{\frac{f(x)}{g(x)}}$

Samples of f obtained by attaching a weight $\frac{f(x)}{g(x)}$ to each sample of g.