# Search and Planning <br> Sayan Mitra 

Based on some lectures by Emilio Frazzoli
March 24

## GEM platform



## Autonomy pipeline



| Sensing |
| :---: |
| Physics-based |
| models of camera, |
| LIDAR, RADAR, GPS, |
| etc. |

Perception
Programs for object detection, lane tracking, scene understanding, etc.

## Decisions and planning

Programs and multiagent models of pedestrians, cars,

## Control

Dynamical models of engine, powertrain, steering, tires, etc.


## A search-based strategy for planning

- Represent vehicle state in a uniform discrete grid
- 4D grid: $x, y, \theta$ (heading), dir (fwd,rev)
- A path (a) over this discrete grid is a start for a plan
- But, the discrete path (a) may not be executable by the vehicle dynamics

- Hybrid $A^{*}$ solves this problem by shifting the points that represent the discrete cells
- More on this in the next lecture



## Shortest path problems

- Input: $\langle V, E, w$, start, goal $\rangle$
- $V$ : (finite) set of vertices
- $E \subseteq V \times V$ : (finite) set of edges
- $w: E \rightarrow \mathbb{R}_{>0}$ : a function that associates to each edge $e$ to a strictly positive weight $w(e)$ (cost, length, time, fuel, prob. of detection)
- start, goal $\in V$ : respectively, start and end vertices.
- Output: $\langle P\rangle$
- $P$ is a path (seq of vertices)
- The weight of a path is the sum of the weights of its edges
- Ultimately, we'd want a path starting in start and ending in goal, such that its weight $w(P)$ is minimal among all such paths
- The graph may be unknown, partially known, or known


## Example: Find the minimal path from s to g :

a simple path $P$ :
$w(P):$


## Search Performance Metrics

- Soundness: when a solution is returned, is it guaranteed to be correct
- Completeness: - the algorithm guaranteed to find a solution when one exists
- Optimality: How close is the found solution to the best solution
- Space complexity: memory needed
- Time complexity: running time; can it be used for online planning?


## Uniform cost search (Uninformed search)

Input: $\langle V, E, w$, start, goal $\rangle$
$Q \leftarrow\langle$ start $\rangle$

```
// initialize a queue of paths with start
```

while $Q \neq \varnothing$ :
from Q pick (and remove) the path $P$ with lowest cost, say $g=w(P)$
if head $(P)=$ goal then return $P$;
foreach vertex $v$ such that $($ head $(P), v) \in E$, do add $\langle v, P\rangle$ to $Q$;
return FAILURE;
// Reached the goal
// for all neighbors
// Add expanded paths
// nothing left to consider

Note no visited list; Use no information obtained from the environment

## Example of Uniform-Cost Search



## Remarks on Uniform Cost Search

- UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all edges have the same cost)
- Note. Algorithm stops when lowest cost path has 'goal' as the head
- UCS is complete and optimal (assuming edge weights bounded away from zero)
- Exercise: prove these
- UCS is guided by path cost rather than path depth, so it may get in trouble if some edge costs are very small
- Worst-case time and space complexity $O\left(b^{W^{*} / \epsilon}\right)$, where $W^{*}$ is the optimal cost, and $\epsilon$ is such that all edge weights are no smaller than
- $b$ is the max number of branches out of each node


## Greedy or Best-First Search

- UCS explores paths in all directions, with no bias towards the goal state
- What if we try to get "closer" to the goal?
- We need a measure of distance to the goal. It would be ideal to use the length of the shortest path... but this is exactly what we are trying to compute!
- We can estimate the distance to the goal through a "heuristic function," $h$ : $V \rightarrow \mathbb{R}_{\geq 0}$. E.g., the Euclidean distance to the goal (as the crow flies)
- A reasonable strategy is to always try to move in such a way to minimize the estimated distance to the goal: this is the basic idea of the greedy (best-first) search


## Greedy/Best-first search

```
Input: }\langleV,E,w,\mathrm{ start, goal,h
Q}\leftarrow\langle\mathrm{ start }
while Q \not=\emptyset:
    from Q pick (and remove) the path P with lowest heuristic cost h(head(P))
    if head(P)= goal then return P
    foreach vertex v such that (head(P),v) \in E, do
        add }\langlev,P\rangle\mathrm{ to Q;
return FAILURE ;
```

Note no visited list

Example of Greedy search

Q: | Path | lost | h |
| :--- | :--- | :--- |
| $\langle s\rangle$ | 0 | 10 |



## Example of Greedy search

Q:

| Path | Cost | h |
| :--- | :--- | :--- |
| $\langle a, s\rangle$ | 2 | 2 |
| $\langle b, s\rangle$ | 5 | 3 |



Example of Greedy search

Q: | Path | lost | h |
| :--- | :--- | :--- |
| $\langle s\rangle$ | 0 | 10 |



## Remarks on greedy/best-first search

- Greedy (Best-First) search is similar to Depth-First Search
- keeps exploring until it has to back up due to a dead end
- Not complete and not optimal, but is often fast and efficient, depending on the heuristic function $h$
- Exercise: Construct an example where greedy can get stuck
- Worst-case time and space complexity $O\left(b^{m}\right)$


## A search

The problems

| UCS is optimal and complete | Best First Search can be fast |
| :--- | :--- |
| UCS may be slow; wander | Not optimal and not complete |
| around before finding the goal. | Neglects the past |

- The idea
- Keep track both of the cost of the partial path to get to a vertex, say $g(v)$, and of the heuristic function estimating the cost to reach the goal from a vertex, $\mathrm{h}(\mathrm{v})$.
- In other words, choose as a "ranking" function the sum of the two costs:

$$
f(v)=g(v)+h(v)
$$

- $g(v)$ cost-to-come (from the start to v )
- $\mathrm{h}(\mathrm{v})$ : cost-to-go estimate (from v to the goal)
- $f(v)$ : estimated cost of the path (from the start to $v$ and then to the goal).


## A search

open set and closed set

Input: $\langle V, E, w$, start, goal, $h\rangle$
$Q \leftarrow\langle$ start $\rangle$
while $Q \neq \emptyset$ :
pick (and remove) path $P$ with lowest estimated cost $f(P)=g(P)+h(h e a d(P))$ from $Q$
if head $(P)=$ goal then return $P$
foreach vertex $v$ such that $(\operatorname{head}(P), v) \in E$, do
add $\langle v, P\rangle$ to $Q$;
return FAILURE;
// Reached the goal
// for all neighbors
// Add expanded paths
// nothing left to consider

Example of A search
Q:

| Path | g | h | f |
| :---: | :--- | :--- | :--- |
| $\langle s\rangle$ | 0 | 10 | 10 |



Example of A search

Q:

| Path | g | h | f |
| :--- | :--- | :--- | :--- |
| $\langle a, s\rangle$ | 2 | 2 | 4 |
| $\langle b, s\rangle$ | 5 | 3 | 8 |



Example of A search

Q:

| Path | g | h | f |
| :--- | :--- | :--- | :--- |
| $\langle a, s\rangle$ | 2 | 2 | 4 |
| $\langle b, s\rangle$ | 5 | 3 | 8 |



## Remarks on A search

- A search is similar to UCS, with a bias induced by the heuristic $h$
- If $h=0, A=U C S$.
- The A search is complete, but is not optimal
- What is wrong? (Recall that if $\mathrm{h}=0$ then $\mathrm{A}=\mathrm{UCS}$, and hence optimal...)

A* Search

- Choose an admissible heuristic, i.e., such that $h(v) \leq h^{*}(v)$
- $h^{*}(v)$ is the "optimal" heuristic---perfect cost to go
- To be admissible $h(v)$ should be at most $h^{*}(v)$
- A search with an admissible heuristic is called A* --- guaranteed to find optimal path

Example of A* search

Q: | Path | g | h | f |
| :--- | :--- | :--- | :--- |
| $\langle s\rangle$ | 0 | 6 | 6 |



## Proof of optimality of A*



## $P^{*}$

- Let $w^{*}$ be the cost of the optimal path
- Suppose for the sake of contradiction, that $A^{*}$ returns $P$ with $w(P)>w^{*}$
- Find the first unexpanded node on the optimal path $P^{*}$; call it $n$
- $f(n)>w(P)$, otherwise $n$ would have been expanded
- $f(n)=g(n)+h(n)$

$$
\begin{array}{ll}
=g^{*}(n)+h(n) & {[\text { since } n \text { is on the optimal path] }} \\
<=g^{*}(n)+h^{*}(n) & \text { [since } h \text { is admissible] }
\end{array}
$$

$$
=f^{*}(n)=w^{*} \quad\left[\text { by def. of } f \text {, and since } w^{*}\right. \text { is the cost of the optimal }
$$

path]

- Hence $w^{*}>=f(n)=w(P)$, which is a contradiction


## Admissible heuristics

- How to find an admissible heuristic? i.e., a heuristic that never overestimates the cost-to-go.
- Examples of admissible heuristics
- $h(v)=0$ : this always works! However, it is not very useful, A $*=$ UCS
- $h(v)=$ distance $(v, g)$ when the vertices of the graphs are physical locations
- $h(v)=\|v-g\|_{p}$, when the vertices of the graph are points in a normed vector space
- A general method
- Choose $h$ as the optimal cost-to-go function for a relaxed problem, that is easy to compute
- Relaxed problem: ignore some of the constraints in the original problem


## Admissible heuristics for the 8-puzzle

Initial state:

| 1 |  | 5 |
| :--- | :--- | :--- |
| 2 | 6 | 3 |
| 7 | 4 | 8 |

Goal state:

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 |  |

Which of the following are admissible heuristics?

- $\mathrm{h}=0$ YES, always good
- $\mathrm{h}=1$ NO, not valid in goal state
- $\mathrm{h}=$ number of tiles in the wrong positon YES, "teleport" each tile to the goal in one move
- $\mathrm{h}=$ sum of (Manhattan) distance between tiles and their goal position. YES, move each tile to the goal ignoring other tiles.


## A partial order of heuristic functions

- Some heuristics are better than others
- $\mathrm{h}=0$ is an admissible heuristic, but is not very useful
- $h=h^{*}$ is also an admissible heuristic, and it the "best" possible one (it give us the optimal path directly, no searches/backtracking)
- Partial order
- We say that $h_{1}$ dominates $h_{2}$ if $h_{1}(v) \geq h_{2}(v)$ for all vertices $v$.
- $h^{*}$ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics
- Choosing the right heuristic
- In general, we want a heuristic that is as close to $\mathrm{h} *$ as possible.
- However, such a heuristic may be too complicated to compute. There is a tradeoff between complexity of computing $h$ and the complexity of the search


## Consistent heuristics

- An additional useful property for $\mathrm{A} *$ heuristics is called consistency
- A heuristic $h: X \rightarrow \mathbb{R}_{\geq 0}$ is said consistent if $\forall(u, v) \in E$

$$
h(u) \leq w(e=(u, v))+h(v)
$$

- In other words, a consistent heuristics satisfies a triangle inequality
- If h is a consistent heuristics, then $f=g+h$ is non-decreasing along paths: $f(v)=g(v)+h(v)=g(u)+w(u, v)+h(v) \geq f(u)$
- Hence, the values of $f$ on the sequence of nodes expanded by $\mathrm{A} *$ is nondecreasing: the first path found to a node is also the optimal path $\Rightarrow$ no need to compare costs!


## A* to hybrid A*

Read Junior paper Sec 6.3: http://robots.stanford.edu/papers/junior08.pdf

- Recall free-form planning problem as search

- Vertices = discretized state/cell; edges to neighbors except obstacles
- A* associates costs with cell center
- Problem: Resulting discrete plan cannot be executed by a vehicle

- Field D* (Ferguson and Stentz, 2005) associates cost with cell corners and allows arbitrary linear paths between cells
- Hybrid A* associates a continuous state with each cell
- Such that the continuous coordinate can be realized by the vehicle



## Hybrid A*

- Let $x, y, \theta$ (heading), dir (fwd,rev) be the current state of the vehicle
- Suppose these coordinates lie in cell $c_{i}$ in the A* representation
- Then we will associate $c_{i}$ with coordinates $x_{i}=x, y_{i}=y, \theta_{i}=$ $\theta, d i r_{i}=d i r$
- Next, suppose the vehicle applies control input u and the resulting state is $\left\langle x^{\prime}, y^{\prime}, \theta^{\prime}, d i r^{\prime}\right\rangle$ and this falls in cell $c_{j}$
- If this is the first time $c_{j}$ is visited then it is assigned coordinates

$$
x^{\prime}, y^{\prime}, \theta^{\prime}, d i r^{\prime}
$$

- Always constructs realizable paths, but it is not complete
- Coarser the discretization, more likely hybrid A* will fail



## Heuristic functions in hybrid A*

## - Euclidean distance

- Nonholonomic without obstacles
- Ignores obstacles but takes into account the non-holonomic dynamics
- Can be computed offline
- Fails in U-shaped dead-ends
- Holonomic with obstacles
- Ignores the non-holonomic dynamics but includes obstacles
- Computed online using 2D grid
- Both are admissible, could use the max of the two


Figure 16: Hybrid-state $\mathrm{A}^{*}$ heuristics. (a) Euclidean distance in 2-D expands 21,515 nodes. (b) The non-holonomic-without-obstacles heuristic is a significant improvement, as it expands 1,465 nodes, but as shown in (c), it can lead to wasteful exploration of dead-ends in more complex settings ( 68,730 nodes). (d) This is rectified by using the latter in conjunction with the holonomic-with-obstacles heuristic ( 10,588 nodes ${ }^{\text {' }}$


## Summary

- A* algorithm combines cost-to-come $\mathrm{g}(\mathrm{v})$ and a heuristic function $\mathrm{h}(\mathrm{v})$ for cost-to-go to find shortest path
- informed search
- heuristic function must be admissible $h(v) \leq h^{*}(v)$
- Never over-estimate the actual cost to go
- Are all $h(v)$ values needed ?
- What if $h$ is not admissible
- How to find heuristics


## Summary

- A* algorithm combines cost-to-come $\mathrm{g}(\mathrm{v})$ and a heuristic function $\mathrm{h}(\mathrm{v})$ for cost-to-go to find shortest path
- informed search
- heuristic function must be admissible $h(v) \leq h^{*}(v)$
- Are all $h(v)$ values needed ?
- What if $h$ is not admissible
- How to find heuristics
- Hybrid A* ensures that computed paths are realizable by actual vehicle dynamics

