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A search-based strategy for planning

• Represent vehicle state in a uniform discrete grid
• 4D grid: 𝑥, 𝑦, 𝜃 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑑𝑖𝑟 (fwd,rev)

• A path (a) over this discrete grid is a start for a plan
• But, the discrete path (a) may not be executable by the 

vehicle dynamics
• Hybrid A* solves this problem by shifting the points that 

represent the discrete cells
• More on this in the next lecture

(a) 



Shortest path problems

• Input: ⟨𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙⟩
• 𝑉: (finite) set of vertices 
• 𝐸 ⊆ 𝑉 × 𝑉: (finite) set of edges
• 𝑤 ∶ 𝐸 → ℝ!": a function that associates to each edge 𝑒 to a strictly positive weight 𝑤(𝑒)

(cost, length, time, fuel, prob. of detection)
• 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙 ∈ 𝑉: respectively, start and end vertices. 

• Output: ⟨𝑃⟩
• 𝑃 is a path (seq of vertices) 
• The weight of a path is the sum of the weights of its edges

• Ultimately, we’d want a path starting in start and ending in goal, such that its weight 𝑤(𝑃) is 
minimal among all such paths 

• The graph may be unknown, partially known, or known



Example: Find the minimal path from s to g:
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Search Performance Metrics

• Soundness: when a solution is returned, is it guaranteed to be correct
• Completeness: – the algorithm guaranteed to find a solution when 

one exists
• Optimality: How close is the found solution to the best solution 
• Space complexity: memory needed
• Time complexity: running time; can it be used for online planning?



Uniform cost search (Uninformed search)

Input: ⟨𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙⟩
𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize a queue of paths with start
while 𝑄 ≠ ∅:

from Q pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑠𝑡, 𝑠𝑎𝑦 𝑔 = 𝑤 𝑃
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 ; // Reached the goal 
foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors 

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths
return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

Note no visited list; Use no information obtained from the 
environment



Example of Uniform-Cost Search
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Remarks on Uniform Cost Search
• UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all 

edges have the same cost) 
• Note. Algorithm stops when lowest cost path has ’goal’ as the head
• UCS is complete and optimal (assuming edge weights bounded away from 

zero) 
• Exercise: prove these

• UCS is guided by path cost rather than path depth, so it may get in trouble if 
some edge costs are very small
• Worst-case time and space complexity 𝑂(𝑏!∗/#), where 𝑊∗ is the optimal 

cost, and 𝜖 is such that all edge weights are no smaller than
• b is the max number of branches out of each node



Greedy or Best-First Search

• UCS explores paths in all directions, with no bias towards the goal state
• What if we try to get “closer” to the goal? 
• We need a measure of distance to the goal. It would be ideal to use the 

length of the shortest path... but this is exactly what we are trying to 
compute! 
• We can estimate the distance to the goal through a “heuristic function,” ℎ ∶
𝑉 → ℝKL. E.g., the Euclidean distance to the goal (as the crow flies)

• A reasonable strategy is to always try to move in such a way to minimize 
the estimated distance to the goal: this is the basic idea of the greedy 
(best-first) search



Greedy/Best-first search

Input: 𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, ℎ
𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize queue with start
while 𝑄 ≠ ∅:

from Q pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑐𝑜𝑠𝑡 ℎ(ℎ𝑒𝑎𝑑 𝑃 )
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 // Reached the goal 
foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors 

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths
return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

Note no visited list



Example of Greedy search
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Remarks on greedy/best-first search

• Greedy (Best-First) search is similar to Depth-First Search
• keeps exploring until it has to back up due to a dead end

• Not complete and not optimal, but is often fast and efficient, 
depending on the heuristic function h
• Exercise: Construct an example where greedy can get stuck

• Worst-case time and space complexity 𝑂(𝑏%)



A search
The problems 

• The idea 
• Keep track both of the cost of the partial path to get to a vertex, say g(v), and of the 

heuristic function estimating the cost to reach the goal from a vertex, h(v). 
• In other words, choose as a “ranking” function the sum of the two costs: 

f (v) = g(v) + h(v) 
• g(v) cost-to-come (from the start to v)
• h(v): cost-to-go estimate (from v to the goal)
• f (v): estimated cost of the path (from the start to v and then to the goal).

UCS is optimal and complete Best First Search can be fast
UCS may be slow; wander 
around before finding the goal. 

Not optimal and not complete
Neglects the past



A search

Input: 𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, ℎ
𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize queue with start
while 𝑄 ≠ ∅:

pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑓 𝑃 = 𝑔 𝑃 + ℎ ℎ𝑒𝑎𝑑 𝑃 𝑓𝑟𝑜𝑚 𝑄
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 // Reached the goal 
foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors 

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths
return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

open set and closed set



Example of A search
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Remarks on A search

• A search is similar to UCS, with a bias induced by the heuristic h 
• If h = 0, A = UCS. 
• The A search is complete, but is not optimal
• What is wrong? (Recall that if h = 0 then A = UCS, and hence optimal...)

A∗ Search 
• Choose an admissible heuristic, i.e., such 𝑡ℎ𝑎𝑡 ℎ(𝑣) ≤ ℎ∗(𝑣)
• ℎ∗(𝑣) is the “optimal” heuristic---perfect cost to go
• To be admissible ℎ(𝑣) should be at most ℎ∗(𝑣)
• A search with an admissible heuristic is called A* --- guaranteed to find optimal path



Example of A* search
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Proof of optimality of A*

• Let w* be the cost of the optimal path
• Suppose for the sake of contradiction, that A* returns P with w(P) > w*
• Find the first unexpanded node on the optimal path P*; call it n
• f(n) > w(P), otherwise n would have been expanded
• f(n) = g(n) + h(n)

= g*(n) + h(n) [since n is on the optimal path]
<= g*(n) + h*(n) [since h is admissible]
= f*(n) = w* [by def. of f, and since w* is the cost of the optimal 

path] 
• Hence w* >= f(n) = w(P), which is a contradiction

s g
P

n

P*



Admissible heuristics
• How to find an admissible heuristic? i.e., a heuristic that never 

overestimates the cost-to-go.
• Examples of admissible heuristics 
• ℎ(𝑣) = 0: this always works! However, it is not very useful,  A∗ = UCS
• ℎ(𝑣) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑔) when the vertices of the graphs are physical locations 
• ℎ(𝑣) = 𝑣 − 𝑔 " , when the vertices of the graph are points in a normed 

vector space

• A general method 
• Choose h as the optimal cost-to-go function for a relaxed problem, that is easy to 

compute 
• Relaxed problem: ignore some of the constraints in the original problem



Admissible heuristics for the 8-puzzle

Which of the following are admissible heuristics? 
• h = 0 YES, always good 
• h = 1 NO, not valid in goal state 
• h = number of tiles in the wrong positon YES, “teleport” each tile to the 

goal in one move 
• h = sum of (Manhattan) distance between tiles and their goal position. YES, 

move each tile to the goal ignoring other tiles.



A partial order of heuristic functions

• Some heuristics are better than others 
• h = 0 is an admissible heuristic, but is not very useful
• h = h* is also an admissible heuristic, and it the “best” possible one (it give us the 

optimal path directly, no searches/backtracking) 

• Partial order 
• We say that ℎ# dominates ℎ$ if ℎ#(𝑣) ≥ ℎ$(𝑣) for all vertices v. 
• ℎ∗ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

• Choosing the right heuristic 
• In general, we want a heuristic that is as close to h ∗ as possible. 
• However, such a heuristic may be too complicated to compute. There is a tradeoff 

between complexity of computing ℎ and the complexity of the search



Consistent heuristics

• An additional useful property for A∗ heuristics is called consistency
• A heuristic ℎ ∶ 𝑋 → ℝ#$ is said consistent if ∀(𝑢, 𝑣) ∈ 𝐸

ℎ(𝑢) ≤ 𝑤 (𝑒 = (𝑢, 𝑣)) + ℎ(𝑣)
• In other words, a consistent heuristics satisfies a triangle inequality 

• If h is a consistent heuristics, then 𝑓 = 𝑔 + ℎ is non-decreasing along 
paths: 𝑓 𝑣 = 𝑔 𝑣 + ℎ 𝑣 = 𝑔 𝑢 + 𝑤 𝑢, 𝑣 + ℎ 𝑣 ≥ 𝑓 𝑢
• Hence, the values of f on the sequence of nodes expanded by A∗ is non-

decreasing: the first path found to a node is also the optimal path ⇒ no 
need to compare costs!



A* to hybrid A*

• Recall free-form planning problem as search
• Vertices = discretized state/cell; edges to neighbors except 

obstacles

• A* associates costs with cell center
• Problem: Resulting discrete plan cannot be executed by a vehicle

• Field D* (Ferguson and Stentz, 2005) associates cost with 
cell corners and allows arbitrary linear paths between cells
• Hybrid A* associates a continuous state with each cell
• Such that the continuous coordinate can be realized by the vehicle

A*

D*

hybrid A*

Read Junior paper Sec 6.3: http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf


Hybrid A*

• Let 𝑥, 𝑦, 𝜃 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑑𝑖𝑟 (fwd,rev) be the current state of the 
vehicle

• Suppose these coordinates lie in cell 𝑐𝑖 in the A* representation
• Then we will associate 𝑐𝑖 with coordinates 𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦, 𝜃𝑖 =
𝜃, 𝑑𝑖𝑟𝑖 = 𝑑𝑖𝑟

• Next, suppose the vehicle applies control input u and the resulting 
state is ⟨𝑥 ′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′⟩ and this falls in cell 𝑐𝑗
• If this is the first time 𝑐𝑗 is visited then it is assigned coordinates 
𝑥′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′

• Always constructs realizable paths, but it is not complete
• Coarser the discretization, more likely hybrid A* will fail

⟨𝑥, 𝑦, 𝜃, 𝑑𝑖𝑟⟩

⟨𝑥′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′⟩

𝑐%

𝑐&



Heuristic functions in hybrid A*
• Euclidean distance

• Nonholonomic without obstacles
• Ignores obstacles but takes into account the 

non-holonomic dynamics
• Can be computed offline
• Fails in U-shaped dead-ends

• Holonomic with obstacles
• Ignores the non-holonomic dynamics but 

includes obstacles
• Computed online using 2D grid

• Both are admissible, could use the max of 
the two



Summary

• A* algorithm combines cost-to-come g(v) and a heuristic function h(v) 
for cost-to-go to find shortest path
• informed search

• heuristic function must be admissible ℎ(𝑣) ≤ ℎ∗(𝑣)
• Never over-estimate the actual cost to go
• Are all ℎ(𝑣) values needed ? 
• What if ℎ is not admissible
• How to find heuristics



Summary

• A* algorithm combines cost-to-come g(v) and a heuristic function h(v) 
for cost-to-go to find shortest path
• informed search

• heuristic function must be admissible ℎ(𝑣) ≤ ℎ∗(𝑣)
• Are all ℎ(𝑣) values needed ? 
• What if ℎ is not admissible
• How to find heuristics

• Hybrid A* ensures that computed paths are realizable by actual
vehicle dynamics


