
Search and Planning
Sayan Mitra

Based on some lectures by Emilio Frazzoli
March 24

Autonomy
pipeline

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

GEM platform

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

A search-based strategy for planning

• Represent vehicle state in a uniform discrete grid
• 4D grid: 𝑥, 𝑦, 𝜃 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑑𝑖𝑟 (fwd,rev)

• A path (a) over this discrete grid is a start for a plan
• But, the discrete path (a) may not be executable by the

vehicle dynamics
• Hybrid A* solves this problem by shifting the points that

represent the discrete cells
• More on this in the next lecture

(a)

Shortest path problems

• Input: ⟨𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙⟩
• 𝑉: (finite) set of vertices
• 𝐸 ⊆ 𝑉 × 𝑉: (finite) set of edges
• 𝑤 ∶ 𝐸 → ℝ!": a function that associates to each edge 𝑒 to a strictly positive weight 𝑤(𝑒)

(cost, length, time, fuel, prob. of detection)
• 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙 ∈ 𝑉: respectively, start and end vertices.

• Output: ⟨𝑃⟩
• 𝑃 is a path (seq of vertices)
• The weight of a path is the sum of the weights of its edges

• Ultimately, we’d want a path starting in start and ending in goal, such that its weight 𝑤(𝑃) is
minimal among all such paths

• The graph may be unknown, partially known, or known

Example: Find the minimal path from s to g:

a

c

s

d

b

g

2 3

4 2

2
5

5

a simple path P:

w(P):

Search Performance Metrics

• Soundness: when a solution is returned, is it guaranteed to be correct
• Completeness: – the algorithm guaranteed to find a solution when

one exists
• Optimality: How close is the found solution to the best solution
• Space complexity: memory needed
• Time complexity: running time; can it be used for online planning?

Uniform cost search (Uninformed search)

Input: ⟨𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙⟩
𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize a queue of paths with start
while 𝑄 ≠ ∅:

from Q pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑠𝑡, 𝑠𝑎𝑦 𝑔 = 𝑤 𝑃
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 ; // Reached the goal
foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths
return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

Note no visited list; Use no information obtained from the
environment

Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

Remarks on Uniform Cost Search
• UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all

edges have the same cost)
• Note. Algorithm stops when lowest cost path has ’goal’ as the head
• UCS is complete and optimal (assuming edge weights bounded away from

zero)
• Exercise: prove these

• UCS is guided by path cost rather than path depth, so it may get in trouble if
some edge costs are very small
• Worst-case time and space complexity 𝑂(𝑏!∗/#), where 𝑊∗ is the optimal

cost, and 𝜖 is such that all edge weights are no smaller than
• b is the max number of branches out of each node

Greedy or Best-First Search

• UCS explores paths in all directions, with no bias towards the goal state
• What if we try to get “closer” to the goal?
• We need a measure of distance to the goal. It would be ideal to use the

length of the shortest path... but this is exactly what we are trying to
compute!
• We can estimate the distance to the goal through a “heuristic function,” ℎ ∶
𝑉 → ℝKL. E.g., the Euclidean distance to the goal (as the crow flies)

• A reasonable strategy is to always try to move in such a way to minimize
the estimated distance to the goal: this is the basic idea of the greedy
(best-first) search

Greedy/Best-first search

Input: 𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, ℎ
𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize queue with start
while 𝑄 ≠ ∅:

from Q pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑐𝑜𝑠𝑡 ℎ(ℎ𝑒𝑎𝑑 𝑃)
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 // Reached the goal
foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths
return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

Note no visited list

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨𝑠⟩ 0 10

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨𝑎, 𝑠⟩ 2 2

⟨𝑏, 𝑠⟩ 5 3

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨𝑠⟩ 0 10

Remarks on greedy/best-first search

• Greedy (Best-First) search is similar to Depth-First Search
• keeps exploring until it has to back up due to a dead end

• Not complete and not optimal, but is often fast and efficient,
depending on the heuristic function h
• Exercise: Construct an example where greedy can get stuck

• Worst-case time and space complexity 𝑂(𝑏%)

A search
The problems

• The idea
• Keep track both of the cost of the partial path to get to a vertex, say g(v), and of the

heuristic function estimating the cost to reach the goal from a vertex, h(v).
• In other words, choose as a “ranking” function the sum of the two costs:

f (v) = g(v) + h(v)
• g(v) cost-to-come (from the start to v)
• h(v): cost-to-go estimate (from v to the goal)
• f (v): estimated cost of the path (from the start to v and then to the goal).

UCS is optimal and complete Best First Search can be fast
UCS may be slow; wander
around before finding the goal.

Not optimal and not complete
Neglects the past

A search

Input: 𝑉, 𝐸, 𝑤, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, ℎ
𝑄 ← 𝑠𝑡𝑎𝑟𝑡 // initialize queue with start
while 𝑄 ≠ ∅:

pick 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒 𝑝𝑎𝑡ℎ 𝑃 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑓 𝑃 = 𝑔 𝑃 + ℎ ℎ𝑒𝑎𝑑 𝑃 𝑓𝑟𝑜𝑚 𝑄
if ℎ𝑒𝑎𝑑 𝑃 = 𝑔𝑜𝑎𝑙 then return 𝑃 // Reached the goal
foreach 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ𝑒𝑎𝑑 𝑃 , 𝑣 ∈ 𝐸, do // for all neighbors

add ⟨𝑣, 𝑃⟩ 𝑡𝑜 𝑄 ; // Add expanded paths
return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 ; // nothing left to consider

open set and closed set

Example of A search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑠⟩ 0 10 10

Example of A search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑎, 𝑠⟩ 2 2 4

⟨𝑏, 𝑠⟩ 5 3 8

Example of A search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑎, 𝑠⟩ 2 2 4

⟨𝑏, 𝑠⟩ 5 3 8

Remarks on A search

• A search is similar to UCS, with a bias induced by the heuristic h
• If h = 0, A = UCS.
• The A search is complete, but is not optimal
• What is wrong? (Recall that if h = 0 then A = UCS, and hence optimal...)

A∗ Search
• Choose an admissible heuristic, i.e., such 𝑡ℎ𝑎𝑡 ℎ(𝑣) ≤ ℎ∗(𝑣)
• ℎ∗(𝑣) is the “optimal” heuristic---perfect cost to go
• To be admissible ℎ(𝑣) should be at most ℎ∗(𝑣)
• A search with an admissible heuristic is called A* --- guaranteed to find optimal path

Example of A* search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑠⟩ 0 6 6

Proof of optimality of A*

• Let w* be the cost of the optimal path
• Suppose for the sake of contradiction, that A* returns P with w(P) > w*
• Find the first unexpanded node on the optimal path P*; call it n
• f(n) > w(P), otherwise n would have been expanded
• f(n) = g(n) + h(n)

= g*(n) + h(n) [since n is on the optimal path]
<= g*(n) + h*(n) [since h is admissible]
= f*(n) = w* [by def. of f, and since w* is the cost of the optimal

path]
• Hence w* >= f(n) = w(P), which is a contradiction

s g
P

n

P*

Admissible heuristics
• How to find an admissible heuristic? i.e., a heuristic that never

overestimates the cost-to-go.
• Examples of admissible heuristics
• ℎ(𝑣) = 0: this always works! However, it is not very useful, A∗ = UCS
• ℎ(𝑣) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣, 𝑔) when the vertices of the graphs are physical locations
• ℎ(𝑣) = 𝑣 − 𝑔 " , when the vertices of the graph are points in a normed

vector space

• A general method
• Choose h as the optimal cost-to-go function for a relaxed problem, that is easy to

compute
• Relaxed problem: ignore some of the constraints in the original problem

Admissible heuristics for the 8-puzzle

Which of the following are admissible heuristics?
• h = 0 YES, always good
• h = 1 NO, not valid in goal state
• h = number of tiles in the wrong positon YES, “teleport” each tile to the

goal in one move
• h = sum of (Manhattan) distance between tiles and their goal position. YES,

move each tile to the goal ignoring other tiles.

A partial order of heuristic functions

• Some heuristics are better than others
• h = 0 is an admissible heuristic, but is not very useful
• h = h* is also an admissible heuristic, and it the “best” possible one (it give us the

optimal path directly, no searches/backtracking)

• Partial order
• We say that ℎ# dominates ℎ$ if ℎ#(𝑣) ≥ ℎ$(𝑣) for all vertices v.
• ℎ∗ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

• Choosing the right heuristic
• In general, we want a heuristic that is as close to h ∗ as possible.
• However, such a heuristic may be too complicated to compute. There is a tradeoff

between complexity of computing ℎ and the complexity of the search

Consistent heuristics

• An additional useful property for A∗ heuristics is called consistency
• A heuristic ℎ ∶ 𝑋 → ℝ#$ is said consistent if ∀(𝑢, 𝑣) ∈ 𝐸

ℎ(𝑢) ≤ 𝑤 (𝑒 = (𝑢, 𝑣)) + ℎ(𝑣)
• In other words, a consistent heuristics satisfies a triangle inequality

• If h is a consistent heuristics, then 𝑓 = 𝑔 + ℎ is non-decreasing along
paths: 𝑓 𝑣 = 𝑔 𝑣 + ℎ 𝑣 = 𝑔 𝑢 + 𝑤 𝑢, 𝑣 + ℎ 𝑣 ≥ 𝑓 𝑢
• Hence, the values of f on the sequence of nodes expanded by A∗ is non-

decreasing: the first path found to a node is also the optimal path ⇒ no
need to compare costs!

A* to hybrid A*

• Recall free-form planning problem as search
• Vertices = discretized state/cell; edges to neighbors except

obstacles

• A* associates costs with cell center
• Problem: Resulting discrete plan cannot be executed by a vehicle

• Field D* (Ferguson and Stentz, 2005) associates cost with
cell corners and allows arbitrary linear paths between cells
• Hybrid A* associates a continuous state with each cell
• Such that the continuous coordinate can be realized by the vehicle

A*

D*

hybrid A*

Read Junior paper Sec 6.3: http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf

Hybrid A*

• Let 𝑥, 𝑦, 𝜃 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑑𝑖𝑟 (fwd,rev) be the current state of the
vehicle

• Suppose these coordinates lie in cell 𝑐𝑖 in the A* representation
• Then we will associate 𝑐𝑖 with coordinates 𝑥𝑖 = 𝑥, 𝑦𝑖 = 𝑦, 𝜃𝑖 =
𝜃, 𝑑𝑖𝑟𝑖 = 𝑑𝑖𝑟

• Next, suppose the vehicle applies control input u and the resulting
state is ⟨𝑥 ′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′⟩ and this falls in cell 𝑐𝑗
• If this is the first time 𝑐𝑗 is visited then it is assigned coordinates
𝑥′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′

• Always constructs realizable paths, but it is not complete
• Coarser the discretization, more likely hybrid A* will fail

⟨𝑥, 𝑦, 𝜃, 𝑑𝑖𝑟⟩

⟨𝑥′, 𝑦′, 𝜃′, 𝑑𝑖𝑟′⟩

𝑐%

𝑐&

Heuristic functions in hybrid A*
• Euclidean distance

• Nonholonomic without obstacles
• Ignores obstacles but takes into account the

non-holonomic dynamics
• Can be computed offline
• Fails in U-shaped dead-ends

• Holonomic with obstacles
• Ignores the non-holonomic dynamics but

includes obstacles
• Computed online using 2D grid

• Both are admissible, could use the max of
the two

Summary

• A* algorithm combines cost-to-come g(v) and a heuristic function h(v)
for cost-to-go to find shortest path
• informed search

• heuristic function must be admissible ℎ(𝑣) ≤ ℎ∗(𝑣)
• Never over-estimate the actual cost to go
• Are all ℎ(𝑣) values needed ?
• What if ℎ is not admissible
• How to find heuristics

Summary

• A* algorithm combines cost-to-come g(v) and a heuristic function h(v)
for cost-to-go to find shortest path
• informed search

• heuristic function must be admissible ℎ(𝑣) ≤ ℎ∗(𝑣)
• Are all ℎ(𝑣) values needed ?
• What if ℎ is not admissible
• How to find heuristics

• Hybrid A* ensures that computed paths are realizable by actual
vehicle dynamics

