Principles of Safe Autonomy: Lecture 12-13: Filtering and Robot Localization

Sayan Mitra March 8, 2022

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox Slides: From the book's website

Announcements from 2020

- No final exam
 - Unless Class Project has to be significantly downgraded because of coronavirus and University closure
- New date for Midterm 2: Wed April 15th
- MP4 + HW3 will be release this week
- Classes may go online after spring break
 - Install zoom application
 - Stay healthy and stay tuned

Review from last time: Beliefs

Belief: Robot's knowledge about the state of the environment

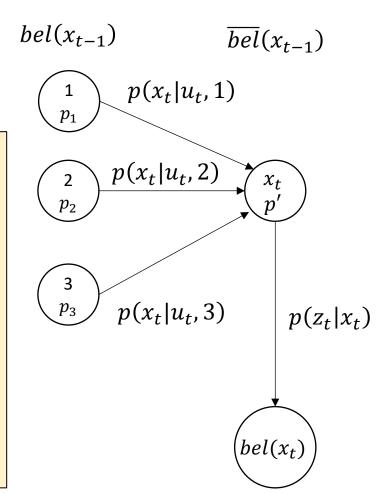
True state is unknowable / measurable typically, so, robot must infer state from data and we have to distinguish this inferred/estimated state from the actual state x_t $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

Posterior distribution over state at time t given all past measurements and control. This will be calculated in two steps:

- 1. Prediction: $\overline{bel}(x_t) = p(x_t|\mathbf{z}_{1:t-1}, u_{1:t})$
- 2. Correction: Calculating $bel(x_t)$ from $\overline{bel}(x_t)$ a.k.a measurement update (will use Equation (*) from earlier)

Recursive Bayes Filter

```
Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t) for all x_t do: \overline{bel}(x_t) = \int p(x_t|u_{t,}x_{t-1})bel(x_{t-1})dx_{t-1} bel(x_t) = \eta \ p(z_t|x_t) \ \overline{bel}(x_t) end for return bel(x_t)
```



Histogram Filter or Discrete Bayes Filter

Finitely many states x_i, x_k, etc . Random state vector X_t

 $p_{k,t}$: belief at time t for state x_k ; discrete probability distribution

Algorithm Discrete_Bayes_filter($\{p_{k,t-1}\}, u_t, z_t$):

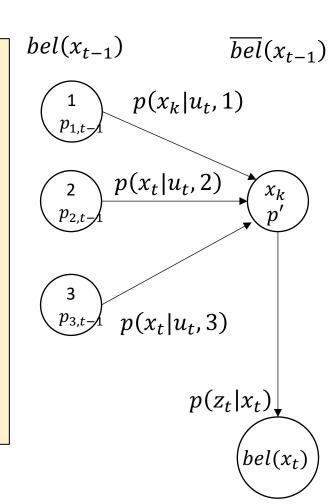
for all k do:

$$\bar{p}_{k,t} = \sum_{i} p(X_t = x_k | u_{t,X_{t-1}} = x_i) p_{i,t-1}$$

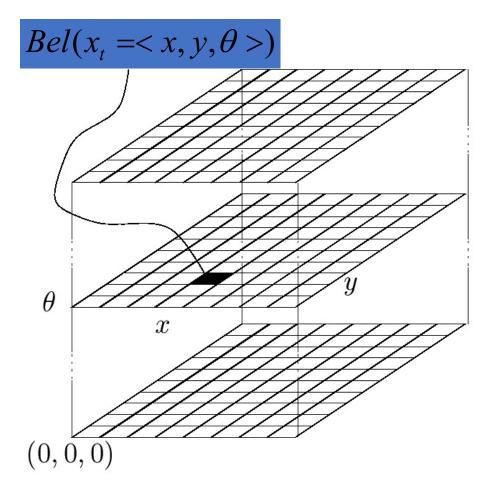
$$p_{k,t} = \eta \ p(z_t | X_t = x_k) \bar{p}_{k,t}$$

end for

return $\{p_{k,t}\}$



Piecewise Constant Representation of beliefs

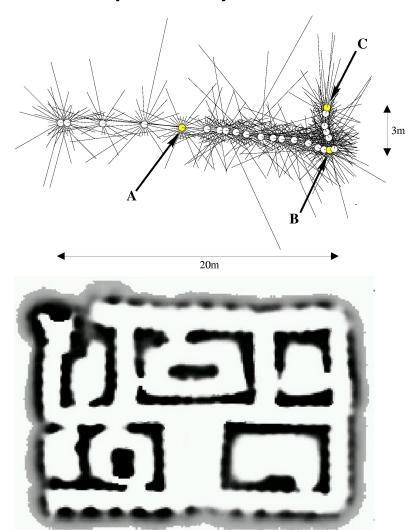


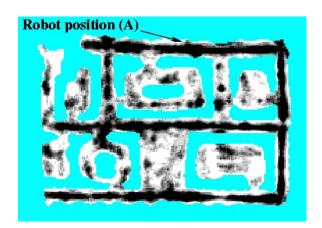
Fixing an input u_t we can compute the new belief

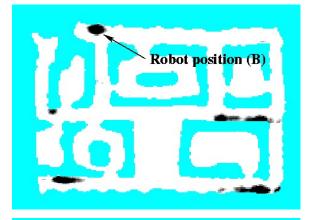
Outline of filtering module

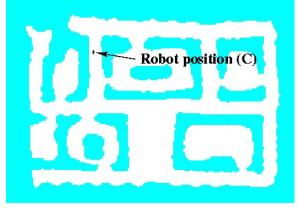
- Particle filter
 - Nonparametric representation of distributions with samples
 - Weighted particles
 - Importance sampling
- Monte Carlo localization
- Examples
- Conclusions

Sonars and Occupancy Grid Map









Monte Carlo Localization

Represents beliefs by particles

Particle Filters

- Represent belief by finite number of parameters (just like histogram filter)
- But, they differ in how the parameters (particles) are generated and populate the state space
- Key idea: represent belief $bel(x_t)$ by a random set of state samples
- Advantages
 - The representation is approximate and nonparametric and therefore can represent a broader set of distributions than e.g., Gaussian
 - Can handle nonlinear tranformations
- Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle filtering algorithm

```
X_t = x_t^{[1]}, x_t^{[2]}, \dots x_t^{[M]} particles
Algorithm Particle_filter(X_{t-1}, u_t, z_t):
\bar{X}_{t-1} = X_t = \emptyset
for all m in [M] do:
                  sample x_{t}^{[m]} \sim p(x_{t}|u_{t}, x_{t-1}^{[m]})
                   w_t^{[m]} = p\left(z_t \middle| x_t^{[m]}\right)
                  \bar{X}_t = \bar{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
end for
for all m in [M] do:
                   draw i with probability \propto w_t^{[i]}
                   add x_t^{[i]} to X_t
end for
return X_t
```

```
ideally, x_t^{[m]} is selected with probability prop. to
p(x_t | z_{1:t}, u_{1:t})
\bar{X}_{t-1} is the temporary particle set
// sampling from state transition dist.
// calculates importance factor w_t or weight
// resampling or importance sampling; these are
distributed according to \eta p\left(z_t \middle| x_t^{[m]}\right) \overline{bel}(x_t)
// survival of fittest: moves/adds particles to parts of
the state space with higher probability
```


Importance Sampling

suppose we want to compute $E_f[I(x \in A)]$ but we can only sample from density g

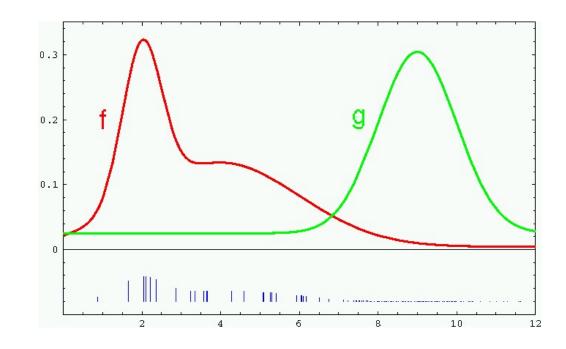
$$E_f[I(x \in A)]$$

$$=\int f(x)I(x\in A)dx$$

$$= \int \frac{f(x)}{g(x)} g(x) I(x \in A) dx, \text{ provided } g(x) > 0$$

$$= \int w(x)g(x)I(x \in A)dx$$

$$= E_g[w(x)I(x \in A)]$$

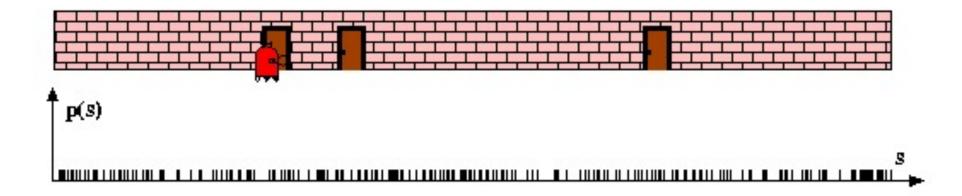


Monte Carlo Localization (MCL)

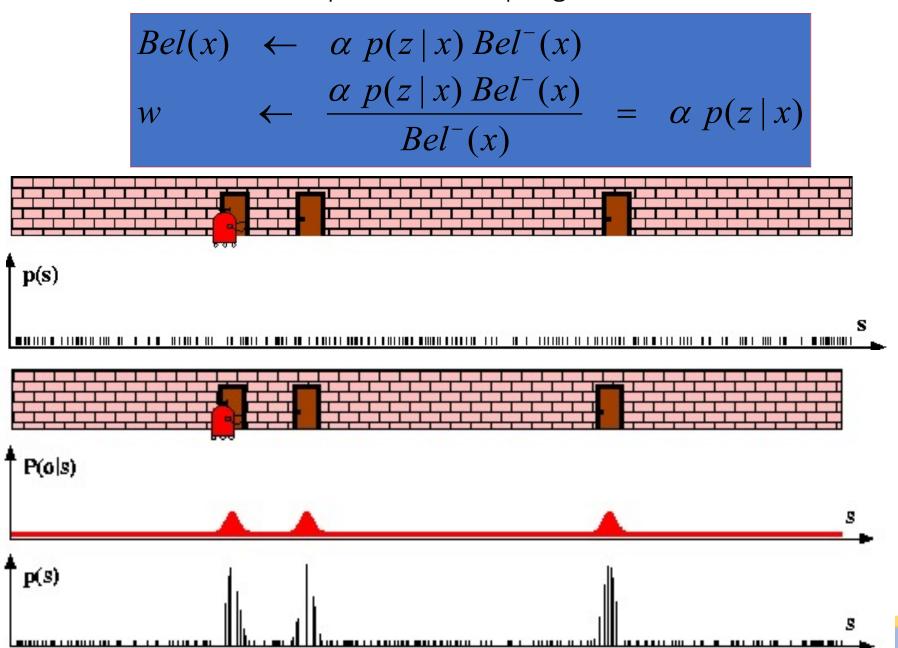
```
X_t = x_t^{[1]}, x_t^{[2]}, \dots x_t^{[M]} particles
Algorithm MCL(X_{t-1}, u_t, z_t, m):
\bar{X}_{t-1} = X_t = \emptyset
for all m in [M] do:
                x_t^{[m]} = sample\_motion\_model(u_t x_{t-1}^{[m]})
                w_t^{[m]} = measurement\_model(z_t, x_t^{[m],m})
               \bar{X}_t = \bar{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
end for
for all m in [M] do:
                draw i with probability \propto w_t^{[i]}
                add x_t^{[i]} to X_t
end for
return X_t
```

Plug in motion and measurement models in the particle filter

Particle Filters

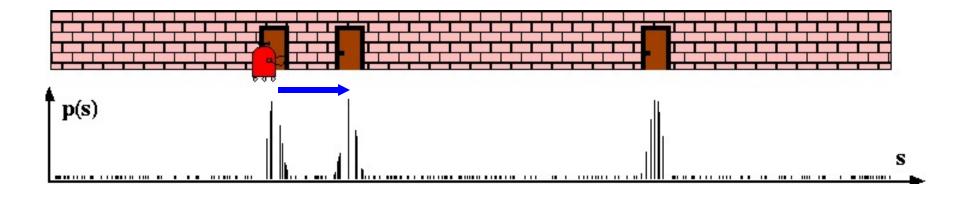


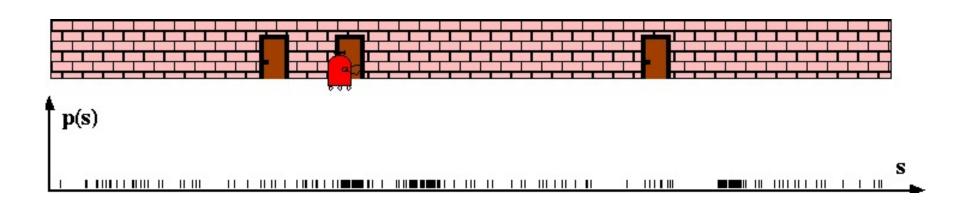
Sensor Information: Importance Sampling



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

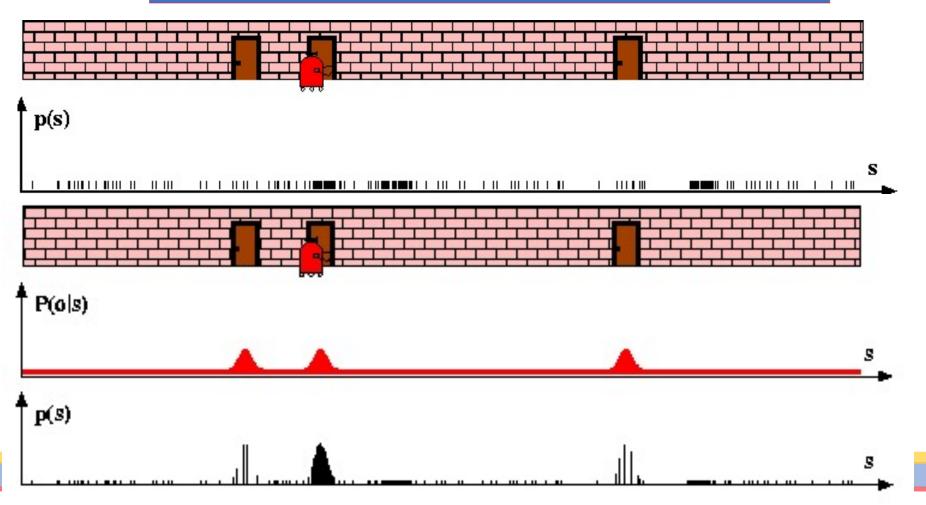




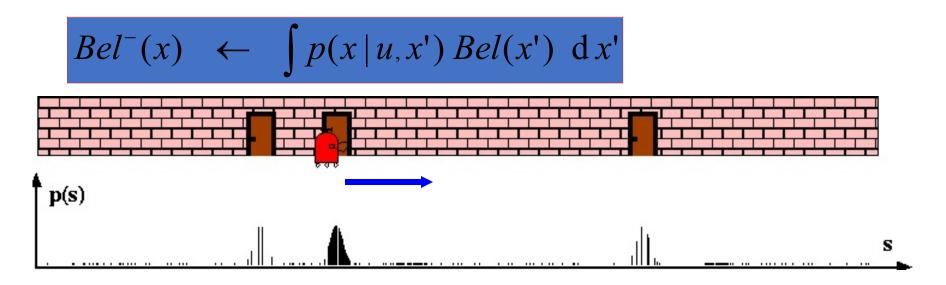
Sensor Information: Importance Sampling

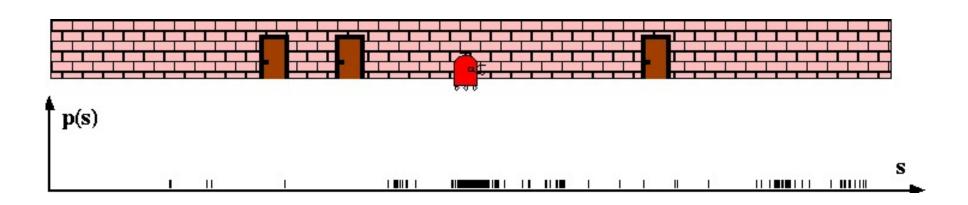
$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

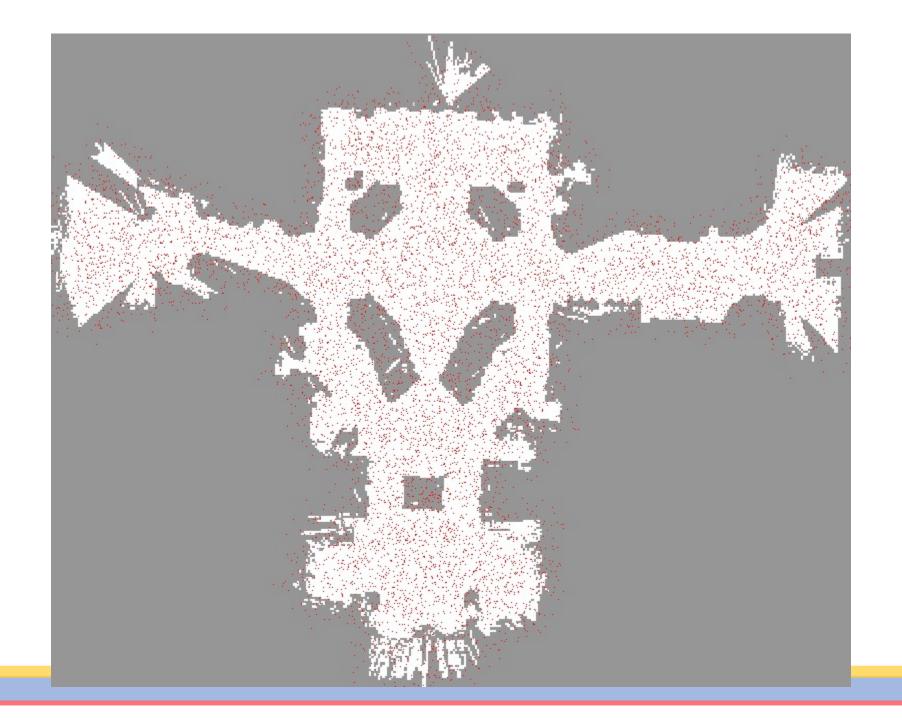
$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

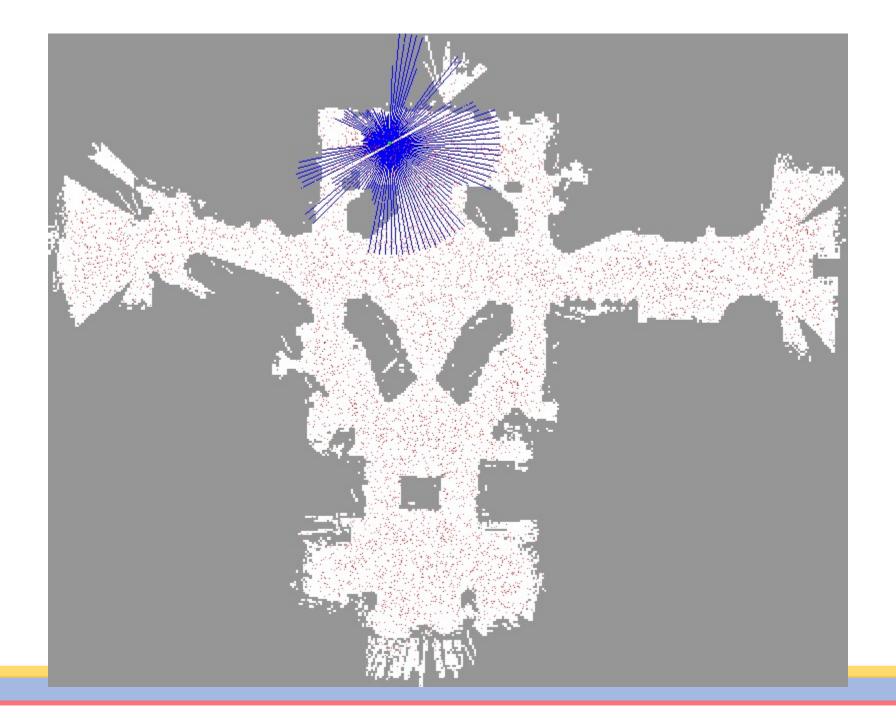


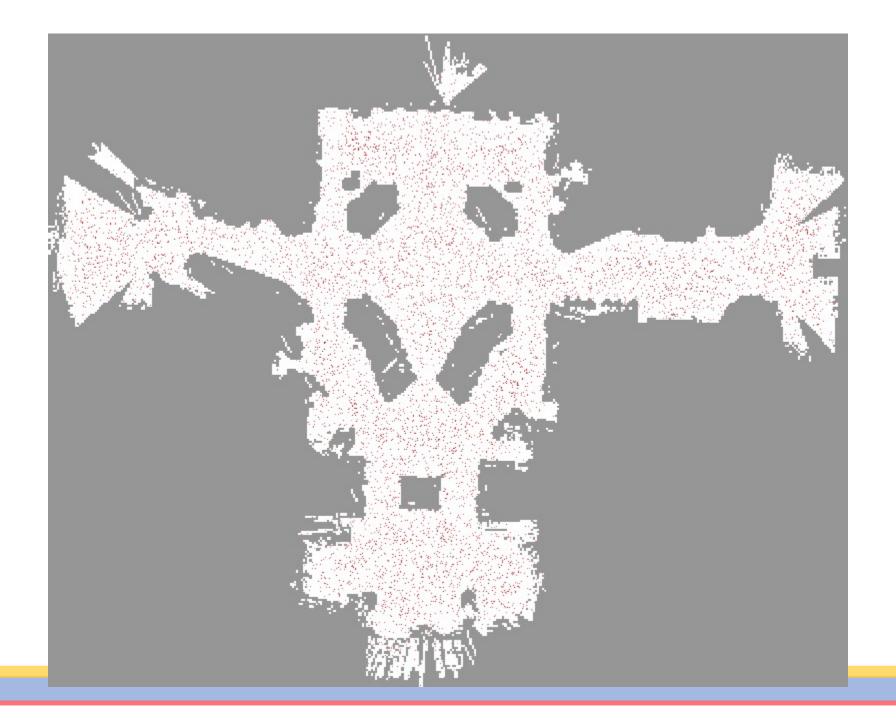
Robot Motion

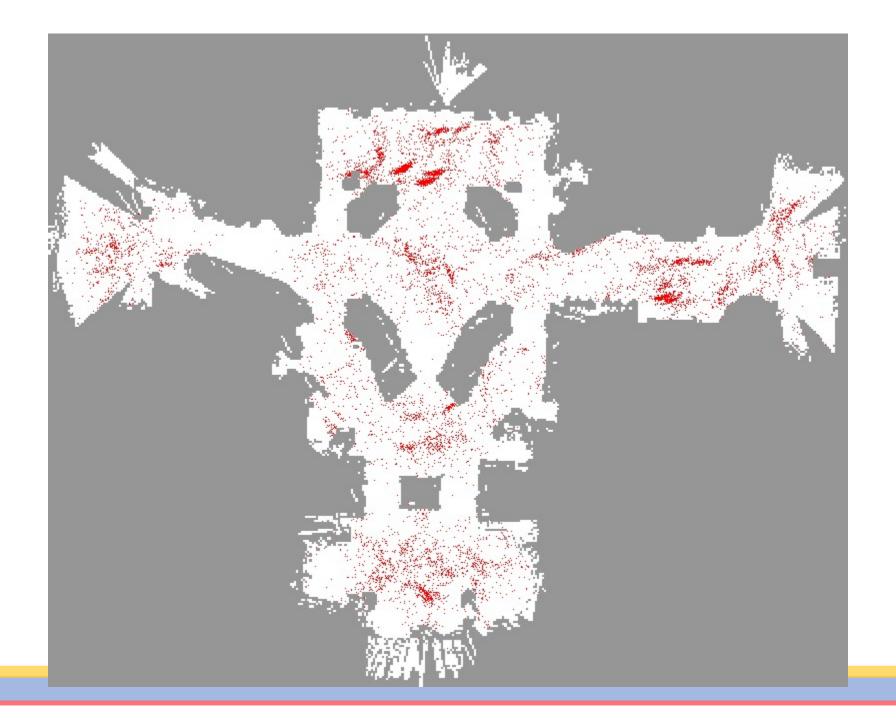


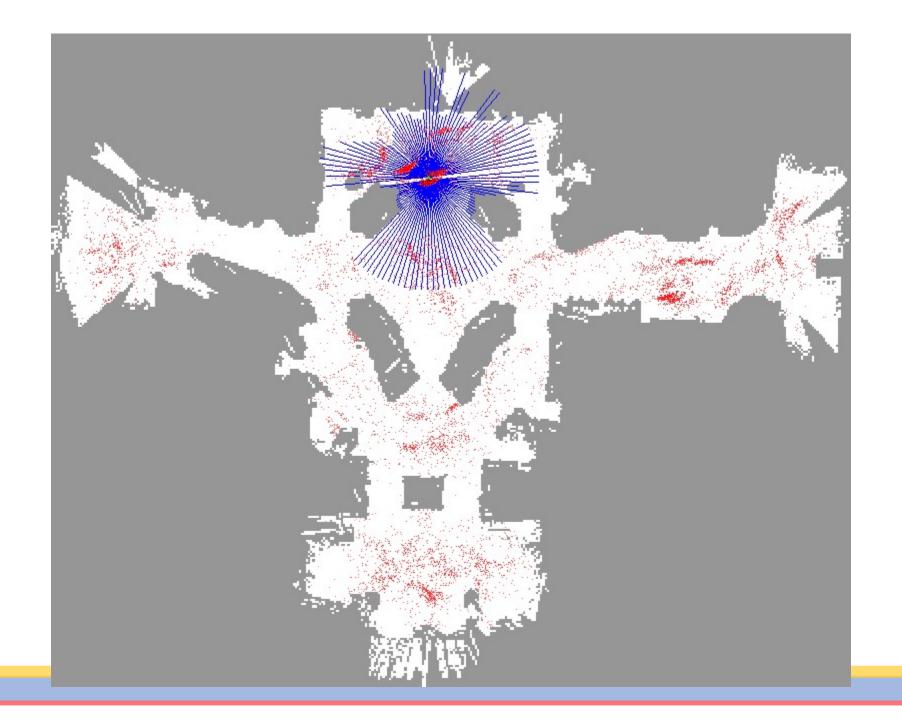


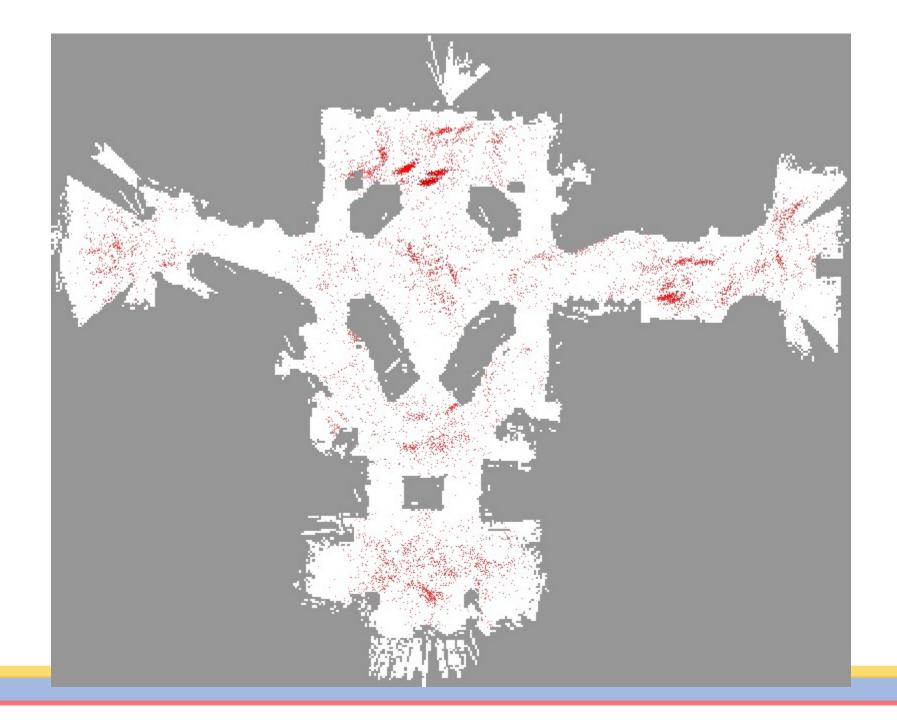


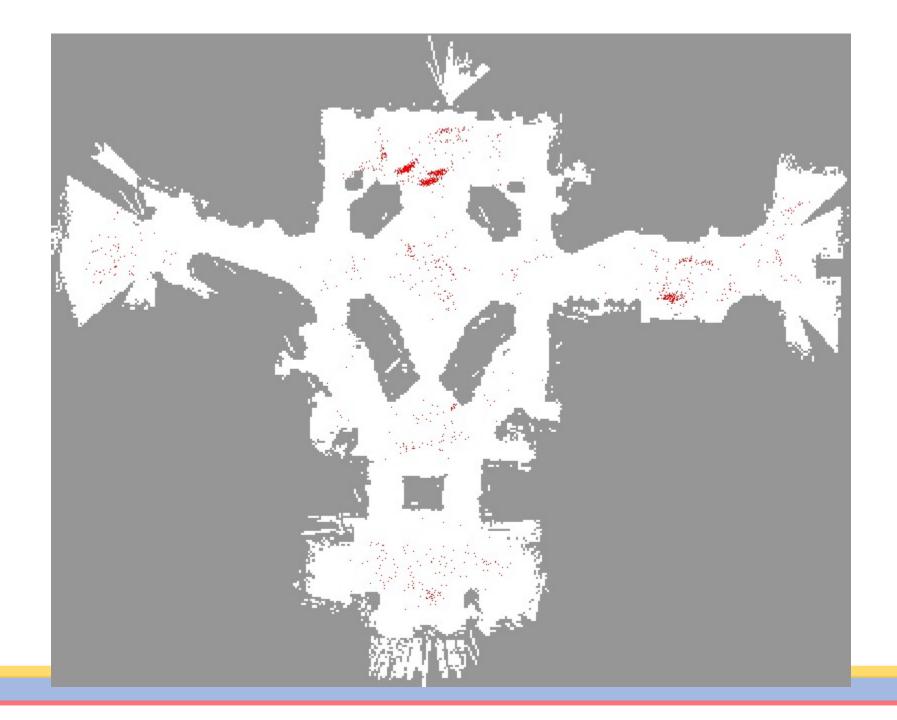


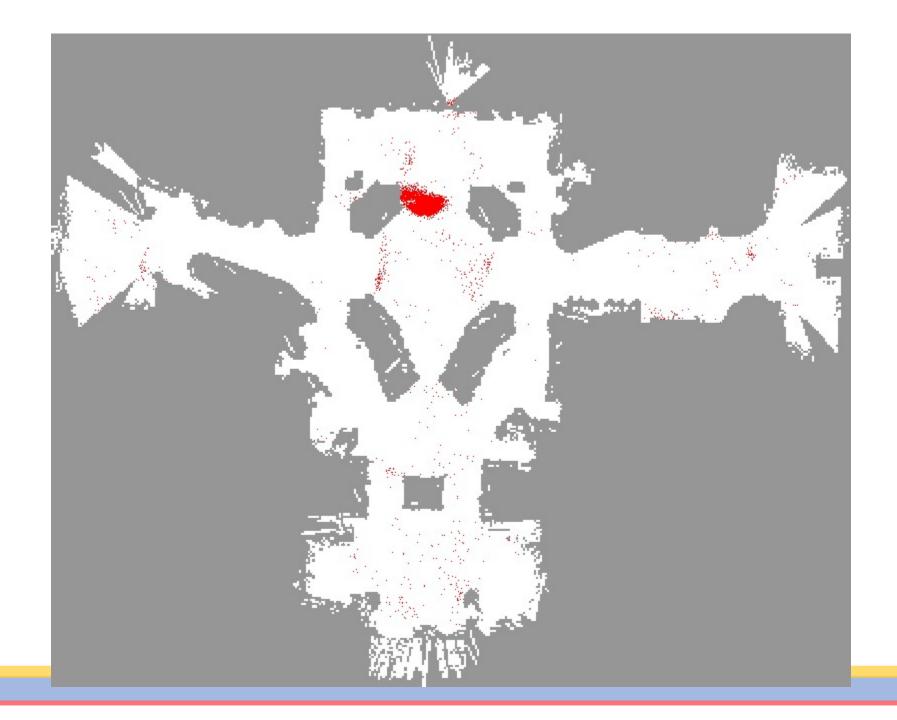


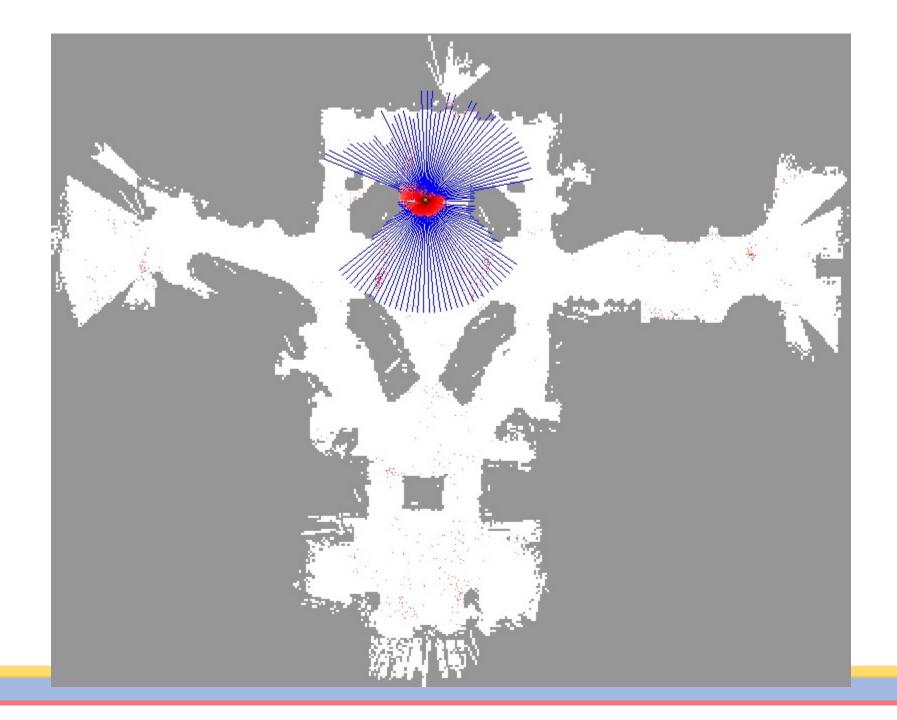


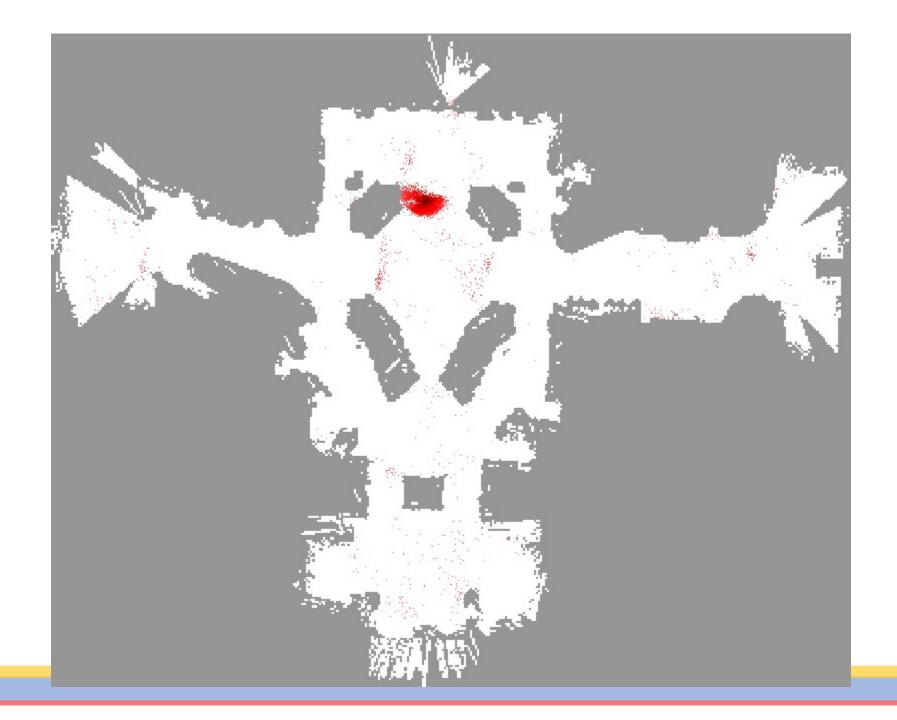


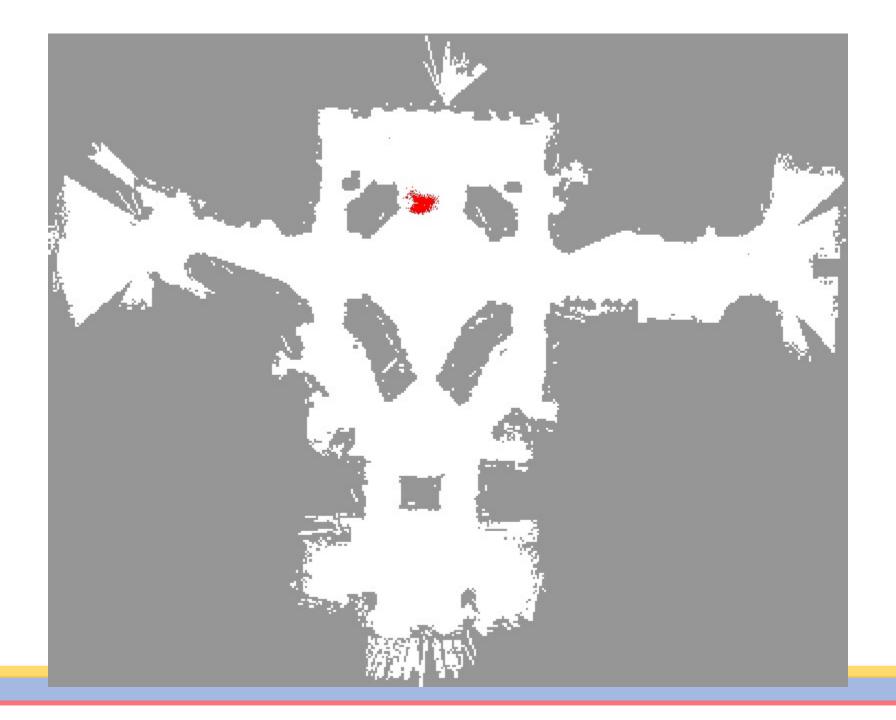


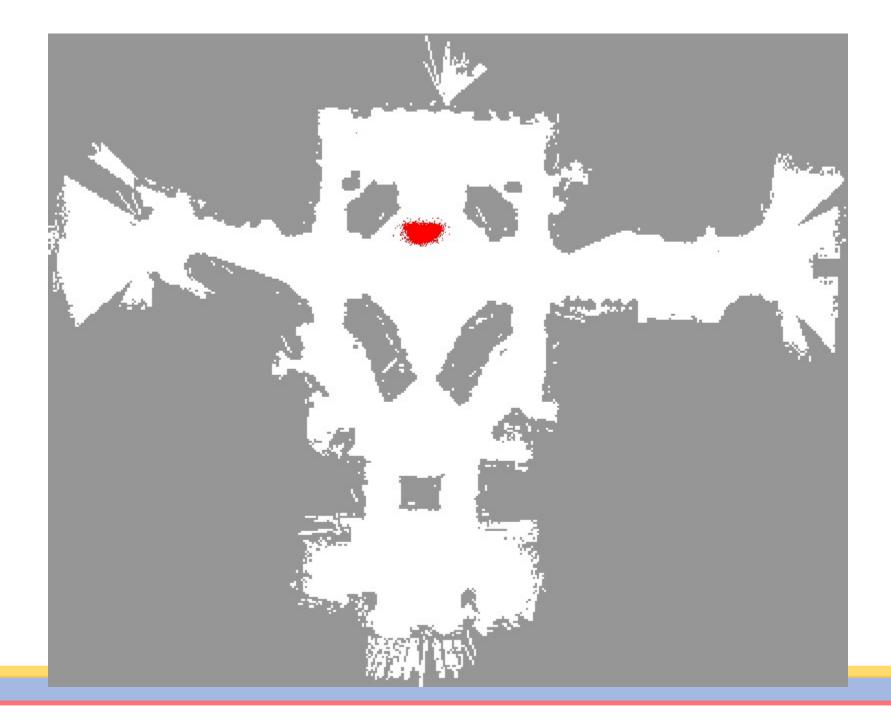


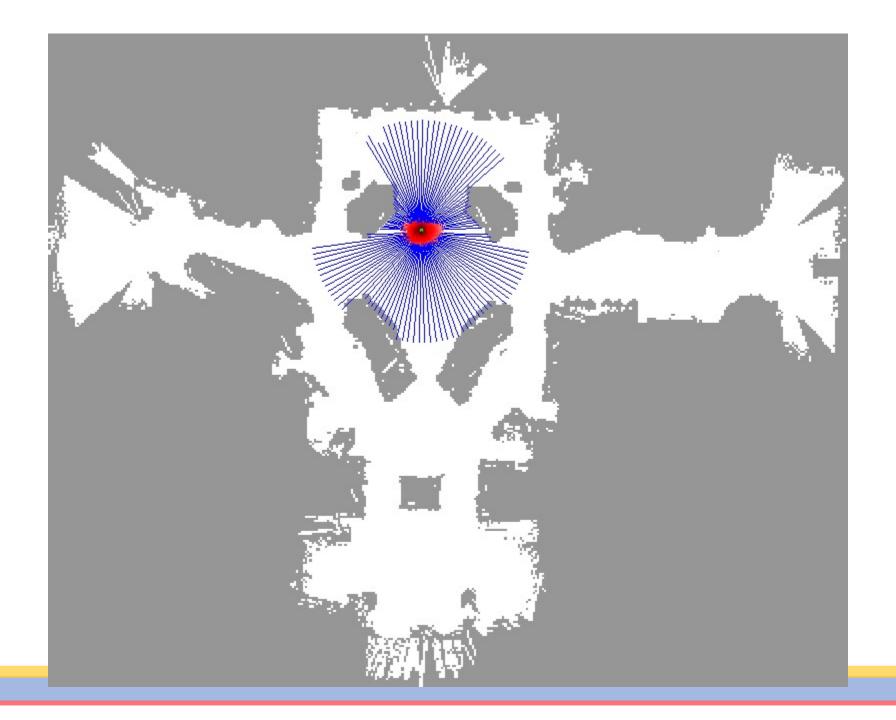


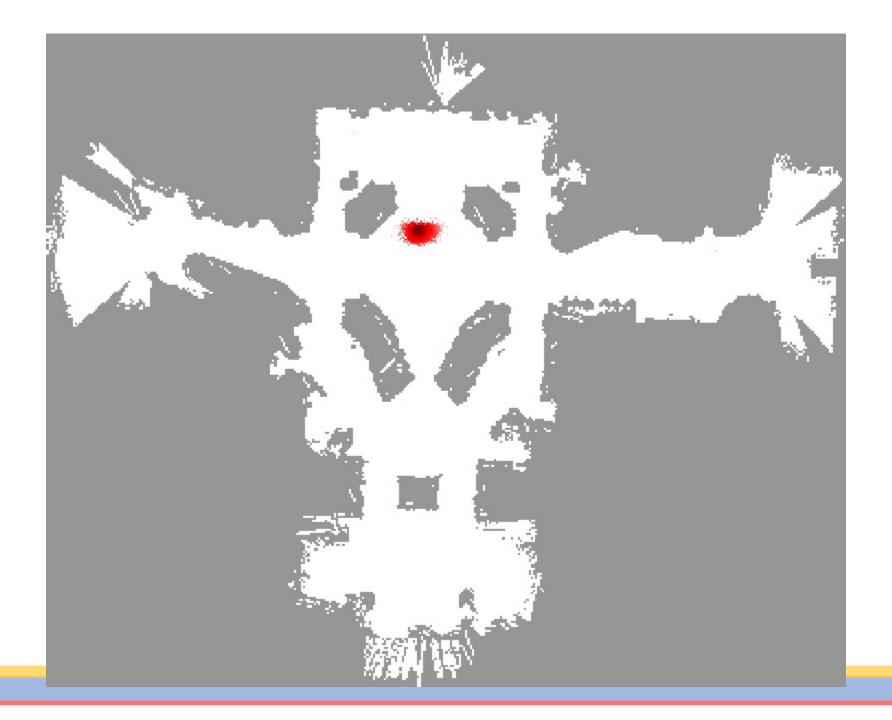


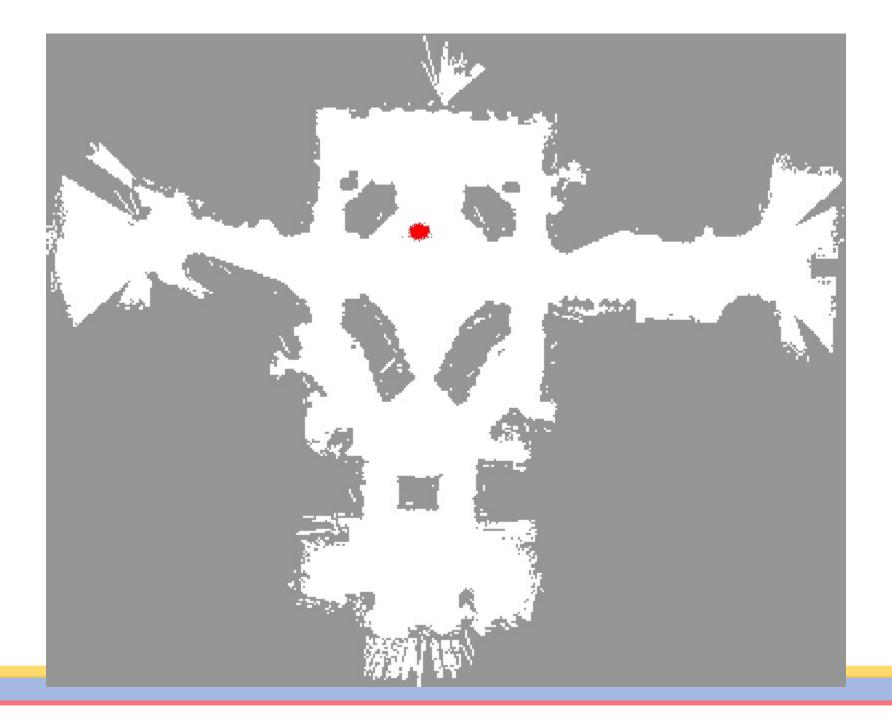


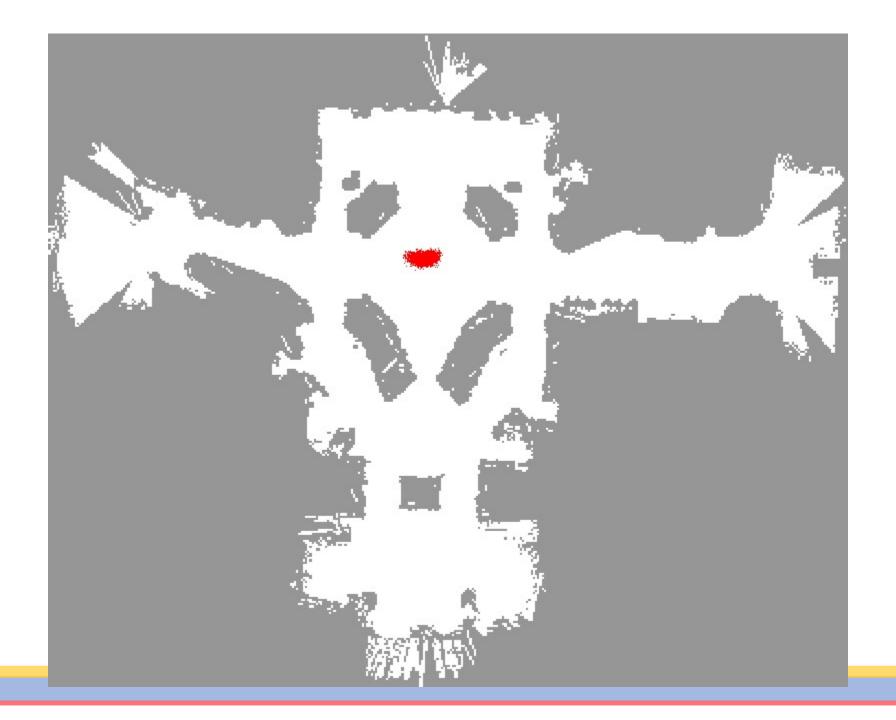


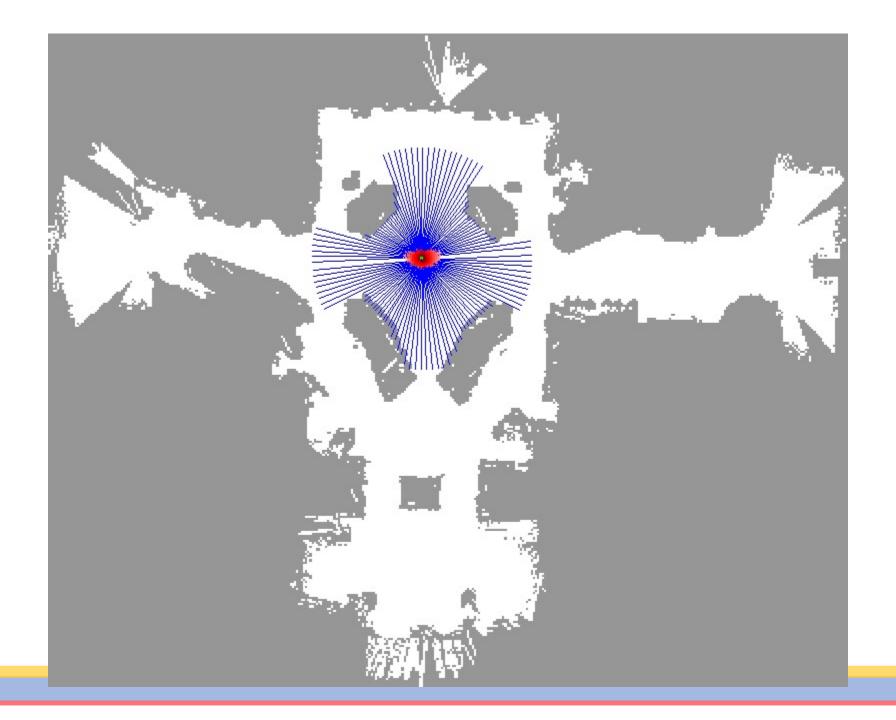


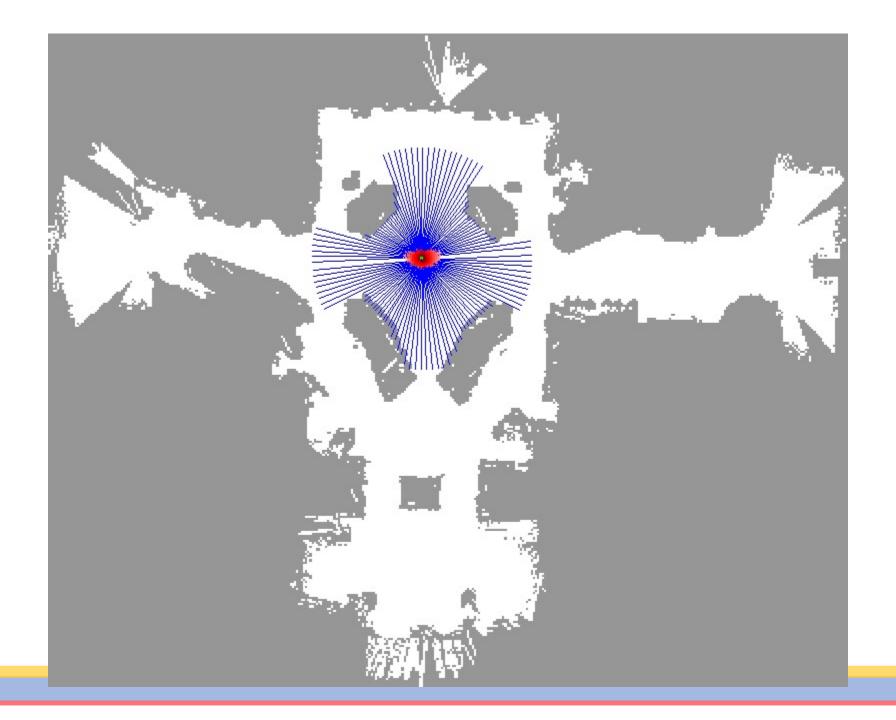




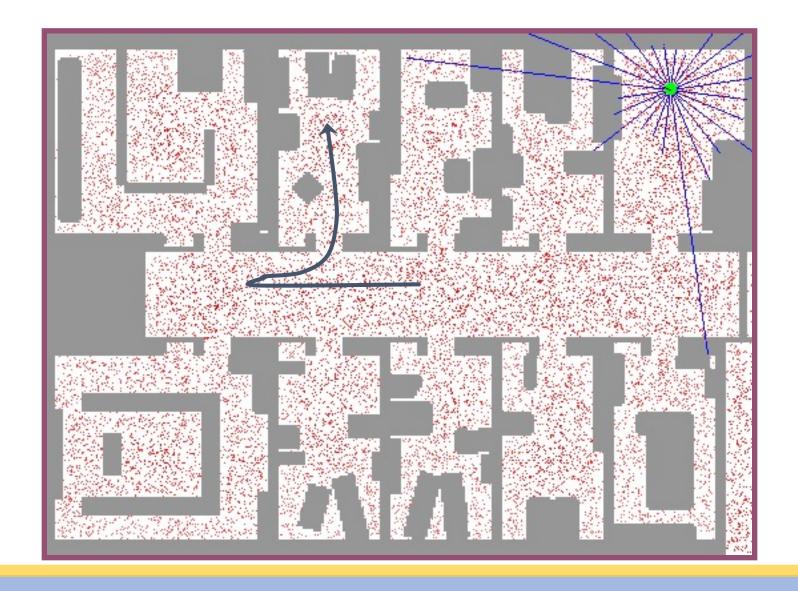




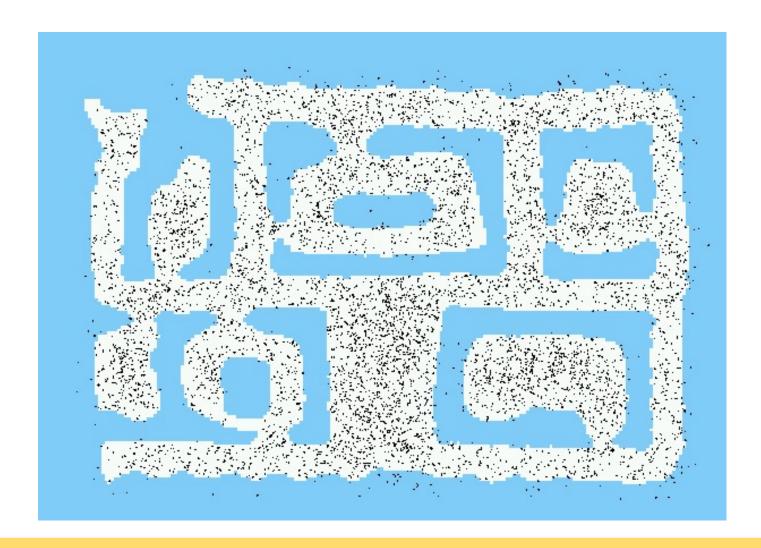




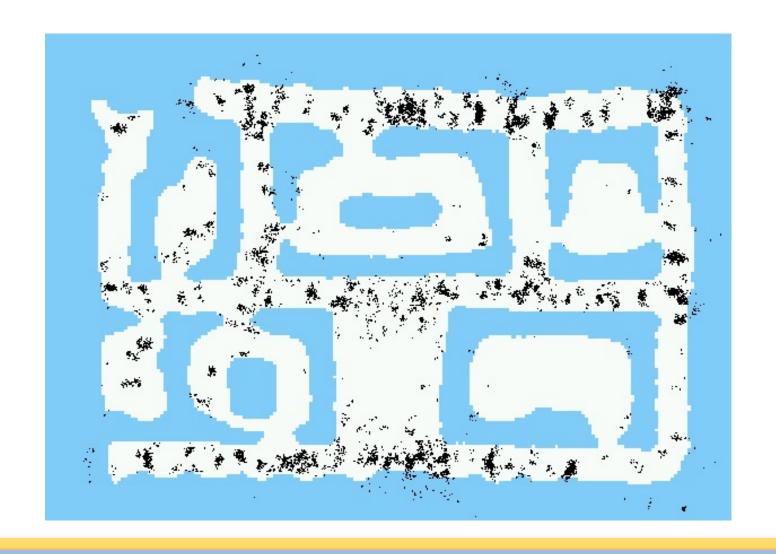
Sample-based Localization (sonar)



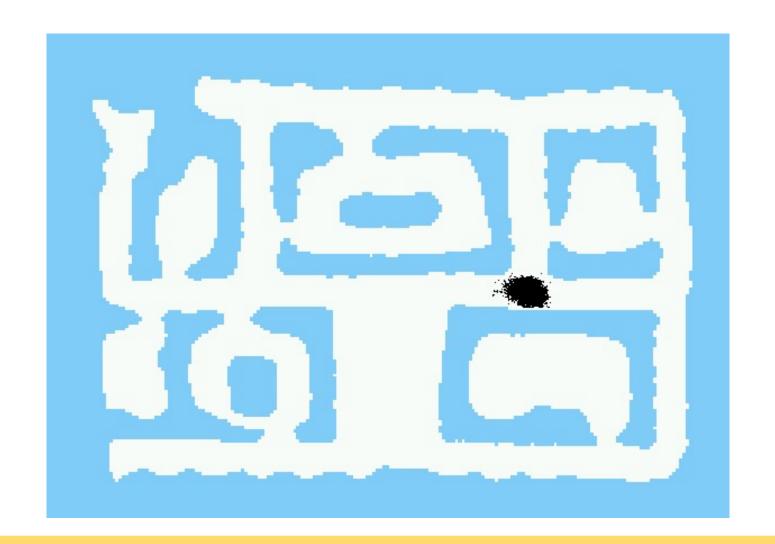
Initial Distribution



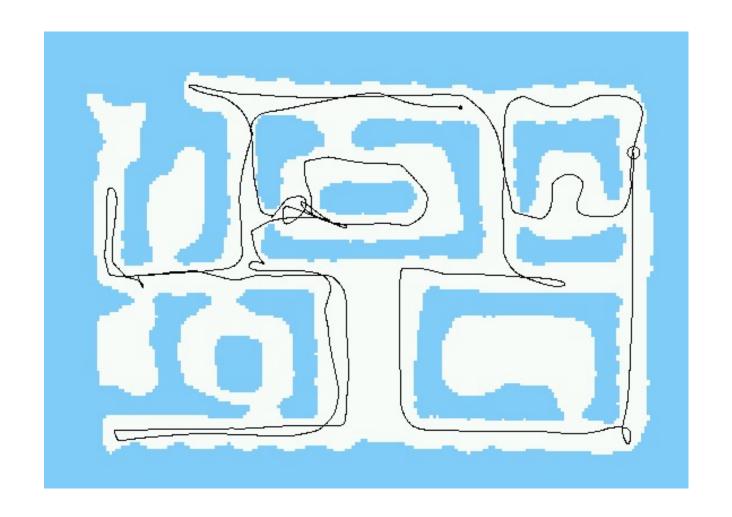
After Incorporating Ten Ultrasound Scans



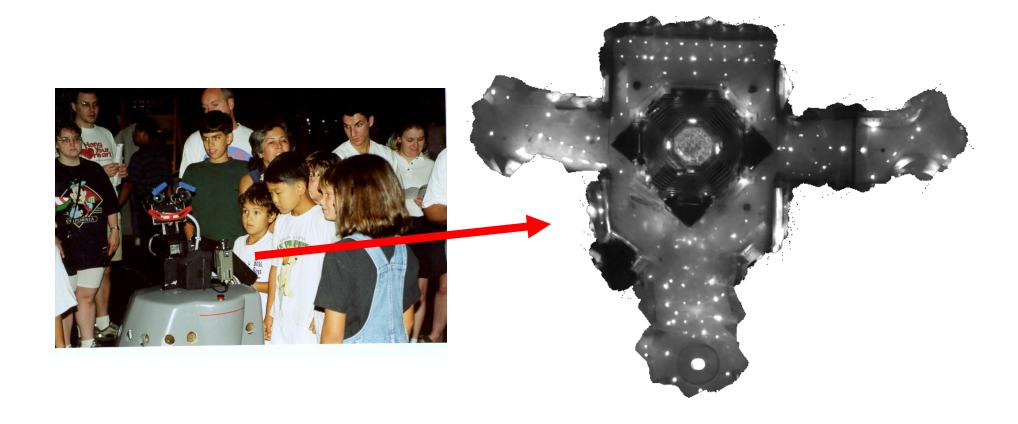
After Incorporating 65 Ultrasound Scans



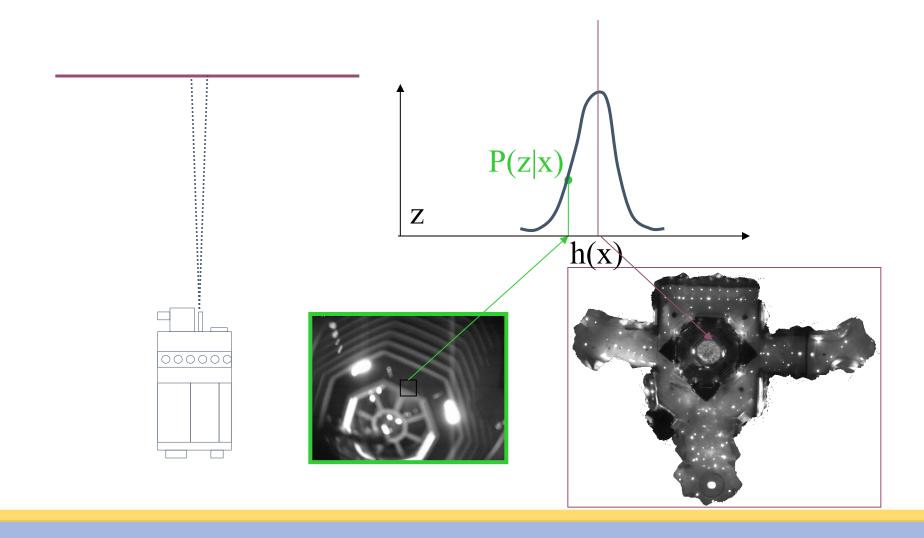
Estimated Path



Using Ceiling Maps for Localization

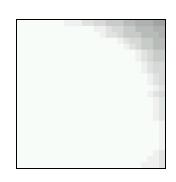


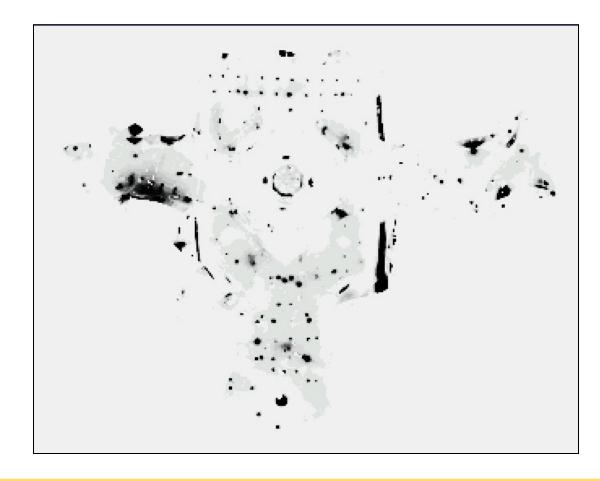
Vision-based Localization



Under a Light

Measurement z:

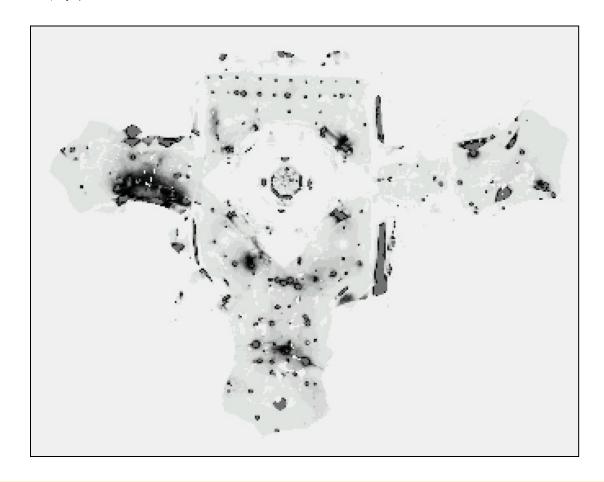




Next to a Light

Measurement z:

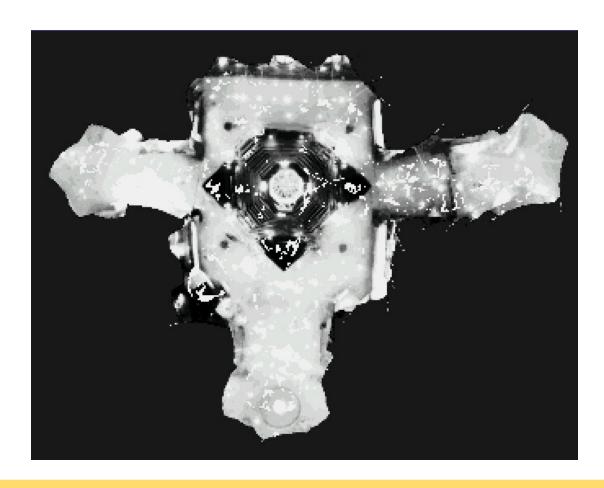
P(z|x):



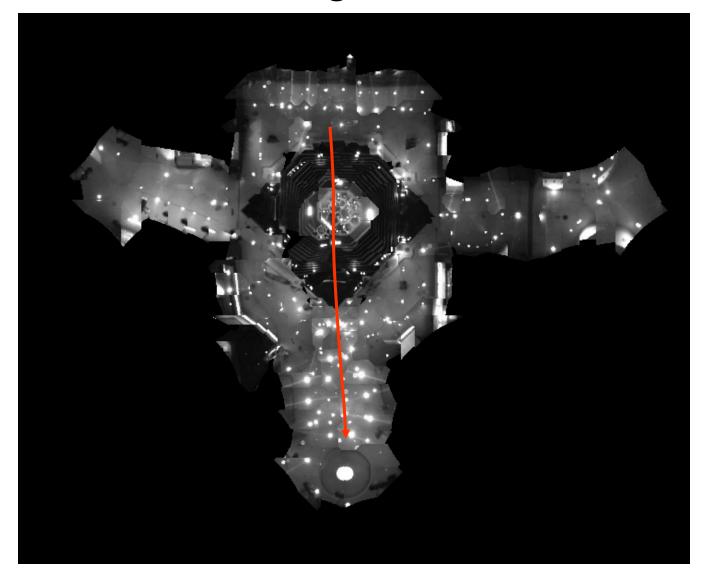
Elsewhere

Measurement z:

P(z|x):



Global Localization Using Vision



Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- Can we deal with localization errors (i.e., the kidnapped robot problem)?
- How to handle localization errors/failures?
 - Particularly serious when the number of particles is small

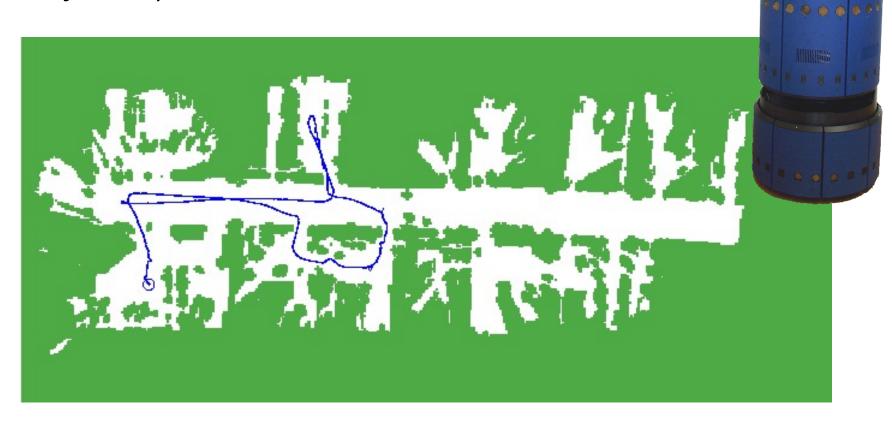
Approaches

- Randomly insert samples
 - Why?
 - The robot can be teleported at any point in time
- How many particles to add? With what distribution?
 - Add particles according to localization performance
 - Monitor the probability of sensor measurements $p(z_t|z_{1:t-1},u_{1:t},m)$
 - For particle filters: $p(z_t|z_{1:t-1},u_{1:t},m) \approx \frac{1}{M}\sum w_t^{[m]}$
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

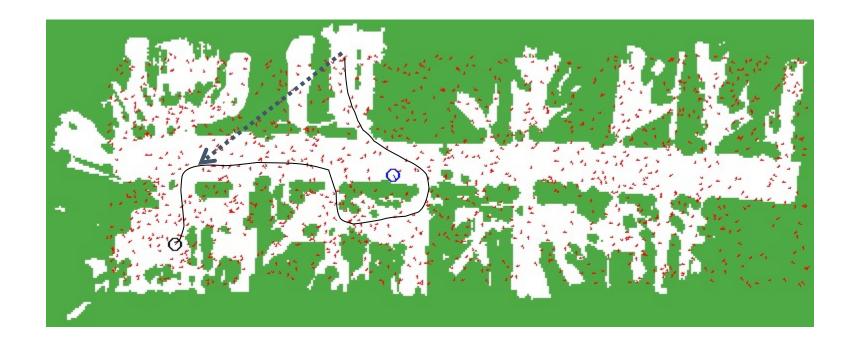
Random Samples Vision-Based Localization

936 Images, 4MB, .6secs/image

Trajectory of the robot:



Kidnapping the Robot



Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.

