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1 Introduction

You are stuck in ECEB and want to find your way out. However, now you don’t know you exact location
in the building. Fortunately, you have a detailed map of ECEB. Therefore you plan to use a particle filter to
find your position.

Same as the previous MPs, this MP is divided into two different parts. In the first part of this MP
(section 2), you will be working on some theoretical problems about particle filter and localization which
can help you better understand the algorithm we talked about during the lecture. In the second part of
this MP (section 3), you will need to implement the Monte Carlo Localization (MCL) discussed during the
lecture. You will have a vehicle constantly running in Gazebo simulator and you need to find the position
of the vehicle using the sensor reading from the vehicle and the map of the environment. The estimated
position of the vehicle will be displayed on the map. You will need to play around with some parameters
of the particle filter and check the effect of those parameters. This is passive localization, that is, the vehicle
motion is controlled independently and you cannot change it for localization.

For part one, you will solve Problems 1-3. For part two, you will need to submit your modified lidarPro-
cessing.py, maze.py, particle_filter.py code and the solution to Problems 4-8. Name all the group members
and cite any external resources you may have used in your solutions. More details for submission are given
in Section 4. All the regulations for academic integrity and plagiarism spelled out in the student code apply.

Learning objectives

• Particle filters

• Localization

• Measurement models

System requirements

• Ubuntu 16

• ROS Kinetic

• ros-kinetic-ros-control

• ros-kinetic-effort-controllers

• ros-kinetic-joint-state-controller

• ros-kinetic-ackermann-msgs
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2 Written Problems

Problem 1 (5 points). In deriving the Bayes filter update rule we used the following

P (x|y, z) = P (y|x, z)P (x|z)
P (y|z) (1)

Derive this relationship using the definition of conditional probabilities.

Problem 2 (10 points). Answer the following short questions about particle filters

(a) What is importance sampling? Write the pseudocode. What role does it play in the particle filtering
algorithm?

(b) List all the information you need to implement a particle filter for a completely new system.

Problem 3 (15 points). Recall in MP0 you proved safety of Automatic Emergency Braking scenario using
invariants. Now let’s add localization into the equations. Imagine a scenario that a connected autonomous
vehicle and a pedestrian’s phone can share information about their locations wirelessly. The localization
methods on the vehicle and on the phone both rely on GPS. However, due to the differences in the receiver
size and performance, the two have different accuracies. Similar to MP0, let’s assume the vehicle starts from
origin and cruises down a straight road in the x-direction. The car has an initial velocity v0 = 5m/s, and
the deceleration rate ab = 5m/s2. Assume the vehicle has no reaction delay and infinite sensing distance
thanks to the connectivity. The pedestrian is still static. Only this time, you don’t have ground truth for the
locations of the vehicle and the pedestrian. Let’s model the sensor noise of the GPS receivers using additive
Gaussian noise model. The measurement ycar of the car GPS can be modeled as ycar = xcar + ncar, where
xcar is the true location of the vehicle and ncar is the Gaussian noise. Similarly, yhuman = xhuman +nhuman.
And from the receiver information, we know that ncar ∼ N(0, 1.5) and nhuman ∼ N(0, 6). For this question,
you don’t need to do formal invariant proofs.

(a) You would like to take no chances and make sure the car is 100% safe. Fortunately, you know the
GPS sensor noises are truncated at a maximum absolute value, i.e., |ncar| ≤ 15, |nhuman| ≤ 60. (We
will ignore the normalization of distribution for this question.) Now given ycar and yhuman, what’s the
minimum safe braking distance needed between the two to ensure safety?

(b) Suppose we use our conservative safe braking distance from (a), but now have perfect position es-
timates, i.e., ycar = xcar, yhuman = xhuman, what is the final distance between the vehicle and the
pedestrian? Is this policy useful in practice? (Note except for the math, there is no one correct answer
for the useful/not useful questions.)

(c) Now you want to take some risks. Instead of using the maximum value truncation, you instead use
your knowledge in probability that 99.7% of the noise fall into 3σ of the N(0, σ2) distribution. Now
let’s do the same analysis again, what’s the minimum safe braking distance between ycar and yhuman

that you must brake to ensure safety? Is it better?
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3 Implementing MCL to localize in ECEB environment

3.1 Module architecture

This section describes components that are important for this MP. However, in this MP you only need to
implement some of the components. The components marked by * are not required for you to implement,
but feel free to check them. In fact, as class project may be utilizing a similar simulation framework, learning
about these components may help with your projects. The overall architecture of this MP is shown in figure
1. Detailed explanation for each of the components in the figure can be found in the following section

Figure 1: Architecture of this MP. Map, Robot, Particles module are located in maze.py

3.1.1 Gazebo simulator*

As usual, this MP will rely on the Gazebo simulator. In the Gazebo simulator, we have created an environ-
ment for the first floor of ECEB. Feel free to take nostalgic virtual tours of your favorite cafe and machine
shops as you WFH.

Gazebo will acquire the position and orientation of the vehicle from the vehicle model and controller
module and display the state of the vehicle in the ECEB environment. In addition, it will send the current
state of the vehicle (position and orientation) to the robot module so that the actual position of the vehicle
can be visualized on some map for debugging.

In addition, the Lidar sensor on the simulated GEM vehicle will constantly publishing the raw point
cloud Lidar reading from the Gazebo simulator.

3.1.2 LidarProcessing

This module is located in the lidarProcessing.py file. This module takes the raw point cloud data from the
Lidar simulator in Gazebo and process the point cloud data so they can be used in other parts of this MP.
The provided LidarProcessing module will only look at 4 directions, (front, rear, left, right) directions of the
of the vehicle and will return the distance between the vehicle and wall in those directions. In this MP, you
will need to modify this module to extend the features of Lidar. Some detailed explanation about how this
module works will be discussed in section 3.2.4.

3.1.3 Vehicle model and controller*

These two modules are implemented in vehicle.py and controller.py. These two modules drive the
vehicle constantly in the Gazebo simulator through a series of waypoints by computing the current position
and orientation of the vehicle and send the information to Gazebo simulator. You should not modify these
two modules.
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3.1.4 Robot and Particle*

Robot and Particle are two classes defined in the maze.py file. The particle class, as its name suggests,
defines the particle that is used in the particle filter algorithm. It has properties recording its x, y position,
its orientation (heading), a weight and the map of the environment that contains a model for the sensor.

The robot class stores the state of the actual vehicle in the Gazebo simulator. It is a derived class of
the particle class. Different from the particles, instead of having a sensor model, the robot will get sensor
readings from the real sensor from the LidarProcessing module.

3.1.5 Maze

This module is located in the maze.py file. This module encodes the map of the environment that the
vehicle stays in. The actual and estimated state of the vehicle will be displayed in this map.

In addition, the maze has a model of the Lidar. Same as the simulated Lidar on the GEM car, the sensor
model will return the distance between particle and wall in front, rear, left and right direction. In this MP,
you will need to modify the sensor model to extend the feature of it. Details about how the sensor model
works will be discussed in section 3.2.4.

3.1.6 Monte Carlo Localization

This module is located in the particle_filter.py file. This is the main module you will working on.
This module contains the implementation of the Monte Carlo Localization that is based on the sensor read-
ing from the robot, sensor reading from each particle from the map, and the control signal from vehicle
model and controller. In addition, the MCL will hold a list of particles. The output from this module is the
estimated position of the vehicle in the ECEB environment. In this MP, the MCL resides in the runFilter
function. You will need to implement this function together with some helper functions to do the calcula-
tions. Detailed guide on how to implement this module is given in the next section.
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3.2 Development instructions

3.2.1 Monte Carlo Localization (MCL)

As already talked about during the lecture, given a map of the environment, MCL can be used to approx-
imate the posterior probability distribution of current location based on motion models and measurement
updates. The algorithm should holds a list of uniformly random generated particles in initialization. Then
as the vehicle moving, the algorithm will shifts the particles to predict its new state after the movement.
With the sensor reading from the vehicle, the particles are weighted and resampled based on how well the
actual sensed data correlated with the predicted state. The algorithm will run iteratively and ultimately,
most of the particles should converge toward the actual state of the vehicle.

Figure 2: Overall flowchart of a MCL based algorithm.
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3.2.2 runFilter

The algorithm will be implemented in the runFilter function. The steps in this function are straightforward.
You only need to constantly loop through the steps as shown in 3. Suppose p = {p1 . . . pn} are the particles
representing the current distribution:

def r u n F i l t e r
while True :

sampleMotionModel ( p )
reading = vehic le_read_sensor ( )
updateWeight ( p , reading )
p = r e s a m p l e P a r t i c l e ( p )

The weighted sum of the position and orientation stored in particles will determine the estimated posi-
tion and orientation of the vehicle and will be displayed on the map.

3.2.3 sample motion model

In this part of the algorithm, each particle needs to predict its new location based on the actuation command
(control input) from the real vehicle.

For this MP, the vehicle dynamics is given as

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = δ

(2)

x, y, θ are the x position, y position and orientation of the vehicle. Velocity v and steering angle δ are the
control signal calculated by the controller.

In this MP, the vehicle module will constantly publish the control signal ([v, δ]) in ROS topic /gem/control.
The particle filter will subscribe to that topic and record the control signal in list self.control. The time
step for each control signal is 0.01s.

With all the above information, we are able to simulate the movement for each particle. We will use the
numeric integrator package ode in the scipy.integrate package to perform the simulation. Detailed
documentation with example for how to use the integrator can be found here. In this case, the initial
condition for each particle is the current state of that particle. You should perform integration through the
whole list of control input stored in self.control with time step 0.01. By doing this, you can properly
predict the new location of the particle.

Note that integration can be expensive with large number of particles. Therefore, though it’s required to
calculate next state for every particle, you probably don’t want to perform integration for all of them. You
can either choose to approximate the differential equations using difference equation (which may reduce
accuracy and influence performance of the algorithm) or reduce the number of integration performed by
applying rotation and translation to calculated trajectory.
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3.2.4 Sensor model and weight updates

Sensor model After propagating particles with state model and control command, we now need to assign
a new weight for each of them according to the measurement from the sensor.

Figure 3: The picture shows the reference coordinate frame of the vehicle. The provided LidarProcessing
will measure distance in front, right, rear, left direction. Picture from here

The sensor reading of the simulated vehicle is coming from the Lidar. The Gazebo simulator will con-
stantly publish raw point cloud data from the simulated lidar. Detailed explanation about point cloud data
can be found here. The LidarProcessing module will subscribe to the raw point cloud data. It will then
process the data and calculate the distance between the vehicle and the wall in front, right, rear and left di-
rection in other words, 0, 270, 180, 90 degree with respect to the vehicle frame as shown in figure 3. Detailed
explanation about how the point clouds data are processed can be found here.

To run the MCL algorithm it’s also necessary to have the sensor reading for each particle. The sensor
model will based on the python map of the environment, and can provide sensor reading for each particle.
Same as the Lidar on the simulated vehicle, the sensor model can measure the distance between particle
and wall in front, right, rear and left direction. In the current implementation of sensor model, the distance
are obtained by counting in step of 1 at each direction until reach the wall.

To have a more accurate simulation, both the simulated Lidar on the vehicle or the senor model have
a sensing limit. Both the sensor on vehicle and sensor model has a certain effective range and it cannot
recognize obstacles that is not within its range. If in the direction, no obstacle is sensed within sensor limit,
the returned sensor reading will be the sensor limit. sensor_limit is an argument that can be changed
when you run the python file. Details about how to change it will be discussed in section 3.4.

For part of this MP, you are supposed to extend the provided LidarProcessing and sensor model. You
will need to add 4 additional measurement directions (total of 8 measurement directions) to the Lidar and
sensor model and compare the performance with using only 4 meausurement directions.
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Update weight To assign the weights to the particles, we need to compare the similarity between the real
sensor measurements and the particle sensor measurements. In this MP we recommend using a Gaussian
Kernel to calculate the likelihood between the two sensor readings. You can compute the difference between
the sensor reading from Lidar on the vehicle and readings from sensor model for each particle and feed the
result into the Gaussian kernel to get the weight value. You can also implement any weight assignment
method you prefer. Please note, the weights need to be normalized before getting into the resampling step.

3.2.5 Resampling particles

In this part of the code, you are supposed to implement function resampleParticle() to resample
particles according to the weight calculated from the section above to replace old set of particles. The
newly sampled particles will be more likely to reside around the particles that have higher weight. It is
recommended to first start implementing this function using multinomial resampling method:

1. Calculate an array of the cumulative sum of the weights.

2. Randomly generate a number and determine which range in that cumulative weight array to which
the number belongs.

3. The index of that range would correspond to the particle that should be created.

4. Repeat sampling until you have the desired number of samples.

Feel free to explore other resampling method that can have better performance. Some additional resam-
pling algorithm can be found here.

3.3 Gazebo Environment and Map

In order to reduce the amount of computational power required for the particle filter, we restrict the vehicle
to move in the north west corner of the ECE building (region around machine shop) as showing in figure 4.

Figure 4: North west corner of ECEB. The vehicle is at its default location
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More specifically, we choose a rectangle region with width 120, height 75, and bottom left corner of the
region is at position (x, y) = (−85, 45) in Gazebo. Because of that, the map we have only represent that
region as shown in fig 5. Therefore, all the particles we choose should from that region. A point p = (x, y)

Figure 5: Maze map in bird’s eye view.

in the Gazebo simulator can be converted to a point p̄ = (x̄, ȳ) in python map as shown below:

x̄ = x+ 85

ȳ = y − 45
(3)

3.4 Running experiment

For this MP, you should be able to start the Gazebo environment using command

roslaunch mp3 gem_vehicle . launch

By running this command, you will be able to see the Gazebo window as shown in figure 4 and the rviz
window as shown in figure 6. For the rviz window, the window on the right shows the visualization of the
raw point cloud data from the Lidar on the simulated vehicle. The window at bottom left shows the image
from the camera on the vehicle. The window at up left shows a visualization of the Lidar bird-eye view.
The distance between vehicle and wall at each measurement direction and the sensed position of wall is
annotated on the bird-eye view. The annotation will not be displayed if no wall is sensed within sensor
limit at that measurement direction.
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Figure 6: The rviz window. Note that the Lidar processing code shown here have 8 measurement directions.

With Gazebo started, you should start running the vehicle in the environment using command

python v e h i c l e . py

If the vehicle is at the default location when the Gazebo is launch as shown in figure 4. If the vehicle is
not at that starting location, you should first run

python set_pos . py

with no argument before running the vehicle or the vehicle may not be able to follow the waypoints.
With the car running, you can now run the particle filter by using command

python main . py −−num_part ic les 1000 −− s e n s o r _ l i m i t 15

The particle filter can take arguments

1. num_particles – This parameter defines the number of particles used in the particle filter. The default
value of this parameter is 1000

2. sensor_limit – This parameter defines the distance the sensor can see. If the distance between the
vehicle and a wall is beyond the sensor limit, the sensor will not be able to see the wall and therefore
will return value equal to sensor limit. The default value of this parameter is 15.
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When the Particle filter is running, you will be able to see a python turtle window pop up with the map
in it as shown in figure 5. You should be able to see two turtles in the map, which corresponds to the actual
and estimated state of the vehicle. The actual state of the vehicle is represented by the green turtle and the
yellow turtle represents the estimated state of the vehicle. The estimated particles are represented by blue
arrows. If you implementation is correct, you should be able to see the particles (blue arrows) converge to
the actual position of the vehicle (green turtle).

3.5 Report

Problem 4 (20 points). Using 4 measurement directions, keep the sensor limit constant at 15, run your
algorithm with number of particles 500, 1000, 1500. Plot the error in position estimation (euclidean distance
between actual position and the estimated position) and orientation estimation as a function of algorithm
iterations. Since particle filtering is a randomized algorithm, run several instances of the same setup and
plot the average error for each time. How does changing the number of particles influence the estimation
accuracy, converging speed and computational cost of the algorithm? Record a video of one of the three
runs. The video should include the turtle map window. Provide a link to the video and include it in the
report.

Problem 5 (20 points). Using 4 measurement directions, keep the number of particles constant at 1000,
run your algorithm with sensor limit 15, 20, 25. Plot the error in position estimation (euclidean distance
between actual position and the estimated position) and orientation estimation as a function of algorithm
iterations. Since particle filtering is a randomized algorithm, run several instances of the same setup and
plot the average error for each time. How does changing sensor limit influence the estimation accuracy,
converging speed and computation cost of the algorithm? Record a video of one of the three runs. The
video should include the turtle map window. Provide a link to the video and include it in the report.

Problem 6 (10 points). Does the particle filter you implemented performs evenly well through the whole
environment after converging? More specifically, does the your particle filter have larger prediction error
in some regions of the environment then other regions? If yes, can you explain why this is happening?

Problem 7 (10 points). Modify the LidarProcessing module and the sensor model so that they can make
measurements in 8 directions. Run your algorithm with number of particles 1000 and sensor limit 20. Plot
the error in position estimation (euclidean distance between actual position and the estimated position)
and orientation estimation as a function of algorithm iterations. Since particle filtering is a randomized
algorithm, run several instances of the same setup and plot the average error for each time. How does
having more sensor data influence the estimation accuracy and converging speed of the algorithm? Record
a video of the run. Besides the turtle map window, the video should include the RViz window of the sensor
measurements. Provide a link to the video and include it in the report.

Problem 8 (10 points). Demo For this MP, you will need to demo your code to one of the TA. You can do
the demo during any of the lab sessions or office hours. The TA will primarily check if the particle filter can
converge within a reasonable number of iterations and track the position of the vehicle closely. Note that
you will need also need to show that your filter can expand the sensor measurement from 4 directions to 8
directions.

4 Report and Submission

Problems 1-3 must be done individually (Homework 3). Write solutions to each problem in a file named
hw3_<netid>.pdf and upload the document in Canvas. Include your name and netid in the pdf. You
may discuss solutions with others, but not use written notes from those discussions to write your answers.
If you use/read any material outside of those provided for this class to help grapple with the problem, you
should cite them explicitly.
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Problems 4-8 can be done in groups of 2-4. Each group should write a report that contains the solutions,
plots, and discussions. This report should be submitted to Canvas per group with filename mp3_groupname.pdf.
Please include links to the video and your solution code in the report.
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