Reference : Probabilistic Robotics by S. Thran et al
Road map.
- localization / estimation problem
- Review of Bayes rule
- One step estimation
- Multi-step estimation Bayes filler algorithm
- Multi-step estimation Bayes filler algorithm
- Multi-step estimation / Stale estimation
Basic problem of localization / Stale estimation
Stale is evolving based on input and noisy
dynamics

$$\pi_{t+1} = f(\pi_t, u_t) + w_t$$

 $\pi_t:$ state \rightarrow we cannot observe / measure
this directly
 $u_t:$ Control input \rightarrow This is known
 $f, w:$ model noise \rightarrow we know model and
 $distribution for w_t$
 $Z_t = h(X_t)$
 $map m$
 $Z_t : measurement$
 $g:$ measurement model
 $\vec{X} = (\pi_t, y, \theta)$
 $Z_t = (Z_t(1), \dots Z_t(t))$

How to use measurements to improve ostimation
of
$$x_{4}$$
.
Review of Bayes Rule / Conditional probability
 X : Random variable taking values
 $x_{1}, x_{2} \dots x_{R}$
 $P(X = x_{1})$ writhen in short as $P(x_{1})$
 $P(X = x_{1}, Z = 3;)$ writhen as $P(x_{1}, y_{3})$
 $P(X = x, Z = 3;)$ writhen as $P(x_{1}, y_{3})$
 $P(X = x, Z = 3;)$ conditional probability
 $g = x = given$
Def. $P(x | 3;) = P(x, 3;)$ (i)
 $P(3)$ Provided $P(3) = P(x, 3;)$
 $P(x, 3;) = P(x, 13;) P(3;)$
 $P(x, 3;) = P(x, 13;) P(x) - (3)$
Replacing (3) in (1)
Bayes Rule
 $P(x, 13;) = P(3|x;) P(x)$ for
 $P(x, 3;) = P(3|x;) P(x)$ for
 $P(x, 3;) = P(3|x;) P(x)$

$$P(x | y, 3) = P(y|x,3) P(x|3)$$

$$P(x|y,3) = P(y|x,3) P(x|3)$$

$$P(y|x,3) = P(y|x,3)$$

$$P(y|x,3) P(y|x,3)$$

$$P(y|x,3) P(y|x,3)$$

$$P(y|x,3) P(x|3) P(x|3)$$

$$P(y|y|) = \sum_{x_i} P(y|y_i|x_i) P(x_i) dx_i$$

$$P(y|y_i) = \sum_{x_i} P(y|y_i|x_i) P(x_i) dx_i$$

In our estimation problem (one shot) X : position : measurement P(X=x) : Prior knowledge about position P(X=x lZ=3) : Posterior

P(Z=3|X=x): Generative model for
measurements (analogous to g)
P(3): does not depend on X
- normalization anstant
$$\eta = /pr$$
)

$$P(x|z) = \eta P(z|x) P(x)$$

Estimation over a sequence f skps
Stale evolves in discrele steps

$$X_1 = x_1 \quad X_2 = x_2 \quad \text{sequence f RVs}$$

 $P(X_{t+1} = x_{t+1} \mid X_t = x_t) \quad P(x_{t+1} \mid x_t)$
 $1 \quad \text{State evolution model}$
In case there is no noise or input
 $P(x_{t+1} = f(x_t) \mid x_t = x_t) = 1$
With inputs and measurements
 $P(x_t = x_t \mid x_0 = x_0, x_1 = x_1 \quad \dots \quad x_t = x_{t-1} \quad u_1 = u \quad u_2 = u_2 \quad \dots \quad u_{t-1} = u_{t-1} \quad x_t = x_t$

Measurement model P(2+ Xoit, Ziit-1, Uoit-1) We assume = $P(2_t | X_t)$ State is complete 1 measurement model Example Simple range sensor measurement model P(Y=y|X=x)actual measurements received from X=x a sonsor Lactual distance Derivation of Bayes filter

Def
Belief is defined as the posterior distribution
over state (at time t) given all paot
measurements and control inputs.
Denoted by bel(
$$x_t$$
)
bel(a_t) = P(x_t | $z_{1:t}$, $u_{1:t}$)
= P(x_t | z_t $z_{1:t-1}$ $u_{1:t}$)
= P(x_t | z_t $z_{1:t-1}$ $u_{1:t}$)
 x y z
Using G
= $P(z_t$ | x_t $z_{1:t-1}$ $u_{1:t}$) P(x_t | $z_{1:t-1}$ $u_{1:t}$)
= $\eta P(z_t$ | x_t $z_{1:t-1}$ $u_{1:t}$) P(x_t | $z_{1:t-1}$ $u_{1:t}$)
= $\eta P(z_t$ | x_t $z_{1:t-1}$ $u_{1:t}$) P(x_t | $z_{1:t-1}$ $u_{1:t}$)
bel(x_t) = $\eta P(z_t$ | x_t $z_{1:t-1}$ $u_{1:t}$) P(x_t | $z_{1:t-1}$ $u_{1:t}$)
bel(x_t) = $\eta P(z_t$ | x_t $z_{1:t-1}$ $u_{1:t}$) P(x_t | $z_{1:t-1}$ $u_{1:t}$)
bel(x_t) = $\eta P(z_t$ | x_t $z_{1:t-1}$ $u_{1:t}$) P(x_t | $z_{1:t-1}$ $u_{1:t}$)
because measurement model assumes
& state is complete
bel(x_t) belief about state at time t
before using measurement info at t
but after using control at time t

$$\overline{bel}(x_{t}) = P(x_{t} | z_{1:t+1}, u_{1:t})$$
Using low of total probability
$$\sum_{x_{t+1}} P(x_{t} | x_{t+1} z_{1:t+1}, u_{1:t}) P(x_{t+1} | z_{1:t+1}, u_{1:t})$$

$$\frac{P(x_{t} | x_{t+1}, u_{t}) P(x_{t+1} | z_{1:t+1}, u_{1:t})}{u_{t+1}}$$

$$= \sum_{x_{t+1}} P(x_{t} | x_{t+1}, u_{t}) P(x_{t+1} | z_{1:t+1}, u_{1:t})$$

$$x_{t+1}$$
IF the control input u_{t} is chosen randomly
$$(not \ u_{sing} \ x_{t+1})$$

$$= \sum_{x_{t+1}} P(x_{t} | x_{t+1}, u_{t}) P(x_{t+1} | z_{1:t+1}, u_{1:t+1})$$

$$\frac{x_{t+1}}{u_{t+1}} \sum_{x_{t+1}} P(x_{t+1} | x_{t+1}) P(x_{t+1} | z_{1:t+1}, u_{1:t+1})$$

$$= \sum_{x_{t+1}} P(x_{t} | x_{t+1}, u_{t}) P(x_{t+1} | z_{1:t+1}, u_{1:t+1})$$

$$\frac{prediction}{u_{t+1}} \sum_{x_{t+1}} P(x_{t} | x_{t+1} u_{t}) bel(x_{t+1})$$

$$\frac{prediction}{u_{t+1}} \sum_{x_{t+1}} P(x_{t} | x_{t+1} u_{t}) bel(x_{t+1})$$

$$\frac{prediction}{u_{t+1}} \sum_{x_{t+1}} P(x_{t} | x_{t+1} u_{t}) bel(x_{t+1})$$

$$\frac{h}{u_{t+1}} continuous form$$

$$\overline{bel}(x_{t}) = \int_{x_{t+1}} P(x_{t} | x_{t+1} u_{t}) bel(x_{t+1}) dx_{t+1}$$

Algorithm Bayes_filter(
$$bel(x_{t-1}), u_t, z_t$$
) frediction
for all x_t do:
 $\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$
 $bel(x_t) = \eta p(z_t | x_t) \overline{bel}(x_t)$
end for
return $bel(x_t)$