Polaris GEM e2 Vehicle

Hang Cui

Feb. 10, 2022

Contents

Hardware & Software of Polaris GEM e2 Vehicle

Simulator of Polaris GEM e2 Vehicle

Lane Tracking

Sensor/Actuator Calibration for Lane Detection and Tracking

GPS-based way points tracker

Path Tracking with Pure Pursuit Controller and Single Monovision Camera

Hardware of Polaris GEM e2 Vehicle

Velodyne VLP-16 LiDAR (Top LiDAR)

Mako G319C Camera (Front Camera)

Delphi ESR 2.5 Radar (Front Radar)

ProPak6 & SPAN-IGM-S1 (GNSS/INS)

PACMod (DBW Kit)

AStuff Spectra 2 (2x RTX 2080)

PACMod

Hardware of Polaris GEM e2 Vehicle

IMU

Software of Polaris GEM e2 Vehicle

System:

Ubuntu 20.04 with ROS Noetic (Python 3) and Gazebo 11

NVIDIA Driver Version: 460.80

Qt 5.12.11

CUDA 11.0.3

cuDNN 8.1.1

TensorRT 8.0.0.3

OpenCV 4.4.0

pytorch 1.7.1

tensorflow 2.5

PCL 1.11.1

The GEM simulator was originally built for ROS Melodic / Gazebo 9 (Ubuntu 18.04)

It has been improved and merged into ROS Noetic / Gazebo 11 (Ubuntu 20.04)

The GEM simulator was originally built for ROS Melodic / Gazebo 9 (Ubuntu 18.04)

It has been improved and merged into ROS Noetic / Gazebo 11 (Ubuntu 20.04)

The GEM simulator was originally built for ROS Melodic / Gazebo 9 (Ubuntu 18.04)

It has been improved and merged into ROS Noetic / Gazebo 11 (Ubuntu 20.04)

Updates & New Features:

- (1) Internel collision bugs were fixed.
- (2) Model's inertia, friction and damping were tuned. (may still need more tunings)
- (3) A frontal 2D laser was added.
- (4) Optinally spawn LiDAR or laser sensor by using ROS launch commands
- (5) Model's domain has been unified, such as /gem/imu/..., /gem/gps/..., /gem/...
- (6) Model's base_link was redefined at the center of the rear axle.
- (7) All sensor frames were calibrated/measured with repect to the base_link.
- (8) Optianlly spawn multiple GEMs into the environmnent (working on it)

(9) A polaris_gem_drivers_sim is under development (gem_gps_tracker_sim, gem_vision_tracker_sim, gem_teleop, gem_pure_pursuit_sim, etc) to work with this simulator, namely polaris_gem_simulator
(10) Coming more

The high bay environment in real size with matched GPS coordinates.

solution_status: "SOL_COMPUTED" position_type: "INS_PSRSP" lat: lon: height: 236.5122384140268 undulation: -32.599998474121094 datum id: "WGS84" Lat: 40.09302494 Lon: -88.23575484

Steering Wheel to Front Wheel Calibration

Steering Wheel to Front Wheel Mapping

Steering Wheel to Front Wheel Calibration

Left Wheel	Right Wheel	Middle Angle	Steering Angle
0	0	0	0
4.6	4.2	4.4	90
10.5	8.5	9.4	180
14	12	12.9	270
18.8	17.3	18	360
24.2	22.4	23.3	450
31.7	26.5	28.9	540
38	33	35.3	630

Steering wheel was controlled by program to ratotat at a particular angles, namely 0, 90, 180, 270, 360, ..., etc.

Lane Detection and Tracking - Bicycle Model

Lane Detection and Tracking - Pure Pursuit Controller

Lane Detection and Tracking - Stanley Controller

$$\delta_{e} = \tan^{-1}\left(\frac{ke}{v}\right)$$
$$\theta_{ref} = \theta_{ref} - \theta$$
$$\delta_{f} = \theta_{e} + \delta_{e}$$

$$e = [\sin\theta_{ref}(x - x_{ref}) - \cos\theta_{ref}(y - y_{ref})]$$

L: wheelbase *e*: cross track error θ_e : heading error δ_e : cross track steering

Lane Tracking with Pure Pursuit Controller

Autoware.Al

Reference

AStuff drivers: <u>https://github.com/astuff</u>

Polaris GEM e2 ROS Noetic simulator: <u>https://github.com/hangcui1201/POLARIS_GEM_e2</u>

Polaris GEM e2 user manual: <u>https://github.com/hangcui1201/POLARIS_GEM_e2</u>

Thanks!