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Outline

• Modeling the control problem 
• Differential Equations; solutions and their properties

• Control design
• Open loop vs closed loop
• PID
• State feedback
• MPC (brief)

• Requirements
• Stability
• Lyapunov theory and its relation to invariance



Typical planning and control modules
• Global navigation and planner

• Find paths from source to destination with static obstacles
• Algorithms: Graph search, Dijkstra, Sampling-based planning
• Time scale: Minutes
• Output: reference center line, does not consider vehicle dynamics 

• Local planner 
• Dynamically feasible trajectory generation
• Dynamic planning w.r.t. obstacles
• Time scales: 10 Hz

• Controller
• Waypoint follower using steering, throttle
• Algorithms: PID control, MPC, Lyapunov-based controller
• Lateral/longitudinal control
• Time scale: 100 Hz



What is control

Control theory is the art of making 
things do what you want them to do

art: tuning parameters
things: Differential equation models
what you want: tracking error or stability



Open look control

System: Sensor, control logic, heater
Control logic: Check every 30 mins
If temperature 𝜃! ≤ 70 then run 
heater for the next 30 mins; 
if 𝜃! ≥ 75 then turn off heater for the 
next 30 mins
Open loop: output of the system is not 
used by the controller 

HeaterTemp 
Sensor

Controller



Complex control tasks: DARPA Robotics Challenge

• 4 points task
• Robot drives the vehicle through the 

course (1)
• Robot gets out of the vehicle and travels 

dismounted out of the end zone (2)
• Bonus point (1)





Open & Closed loop control

�̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡
𝑦 𝑡 = ℎ(𝑥 𝑡 )
𝑢 𝑡 = 𝑔(𝑦" 𝑡 )

�̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡
𝑦(𝑡) = 𝑠 𝑥 𝑡
𝑢 𝑡 = 𝑔(𝑦 𝑡 , 𝑦"(𝑡))

system output

PlantSensor Controller

Input/waypoint

control signal
𝑢(𝑡)

Feedback

Noise Disturbance

PlantController

Input/waypoint
control signal

𝑢(𝑡)

Disturbance



Cruise control

�̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡
𝑦(𝑡) = 𝑠 𝑥 𝑡
𝑢 𝑡 = 𝑔(𝑦 𝑡 , 𝑦"(𝑡))

Control design is the problem of 
figuring out 𝑔 given certain 
requirements on 𝑦(𝑡)

Engine
speed 

sensor/GPS
Controller

Speed setpoint

Throttle
𝑢(𝑡)

Feedback

Noise

Car body



Modeling control systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: !" #
!#

= 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 − 1 ,

where time 𝑡 ∈ ℝ; state 𝑥 𝑡 ∈ ℝ$; 𝑖𝑛𝑝𝑢𝑡 𝑢 𝑡 ∈ ℝ%; 𝑓: ℝ$× ℝ% × ℝ → ℝ$

Example. !" #
!#

= 𝑣(𝑡) ; !& #
!#

= −𝑔

Initial value problem: Given system (1) and initial state 𝑥' ∈ ℝ$, 𝑡' ∈ ℝ, and input u:ℝ →
ℝ%, find a state trajectory or solution of (1).
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Example 1: Pendulum

Pendulum equation

𝑥! = 𝜃 𝑥" = �̇�

𝑥" = �̇�!

�̇�" = −
𝑔
𝑙 sin 𝑥! −

𝑘
𝑚𝑥"

̇𝑥"
̇𝑥!

= −
#
$
sin 𝑥! − %

&
𝑥"

𝑥"

𝑘: friction coefficient 

𝑙
𝜃

𝑚

What is described?

-> Center of mass movement relative to the origin



Example 2. Differential Drive Model

X1

Y1

X0

Y0

q(𝑥, 𝑦)

w

R l

𝑣3

𝑣4

Instantaneous Center of Curvature
= [𝑥 − 𝑅 𝑠𝑖𝑛 𝜃 , 𝑦 + 𝑅 𝑐𝑜𝑠 𝜃] = [𝐼𝐶𝐶' , 𝐼𝐶𝐶(]

𝜔(𝑅 + 𝑙/2) = 𝑣)
𝜔(𝑅 − 𝑙/2) = 𝑣$

𝑅 =
𝑙
2
(𝑣) + 𝑣$ )
(𝑣) − 𝑣$ )

𝜔 =
𝑣) − 𝑣$

𝑙



Example 3: Simple vehicle model: Dubin’s car

Key assumptions
• Front and rear wheel in the plane in a stationary coordinate system
• Steering input, front wheel steering angle 𝛿
• No slip: wheels move only in the direction of the plane they reside in

Zeroing out the accelerations perpendicular to the plane in 
which the wheels reside, we get the equations in the next slide

Modeling one wheel is enough

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 
2016. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE 
Transactions on Intelligent Vehicles 1 (1): 33–55. 

X1

Y1

X0

Y0

q

𝛿
𝑙

(𝑥, 𝑦)



Rear Wheel Model (Dubin’s model)

X1

Y1

X0

Y0

q

𝛿
𝑙

(𝑥, 𝑦)

�̇� = 𝑣 𝑐𝑜𝑠𝜃
�̇� = 𝑣 𝑠𝑖𝑛𝜃

�̇� =
𝑣
𝑙 𝑡𝑎𝑛𝛿

Car (real wheel) pose = 
𝑥
𝑦
𝜃

Car length = 𝑙

Car  (front wheel) steering angle = δ
Car speed = 𝑣



Notions of solution

What is a solution? Many different notions.

Definition 1. (First attempt) Given  𝑥* and  𝑢, 𝜉: ℝ → ℝ+ is a solution or 
trajectory iff

(1) 𝜉 𝑡* = 𝑥* and 

(2) ,
,-
𝜉 𝑡 = 𝑓(𝜉 𝑡 , 𝑢 𝑡 , 𝑡)), ∀𝑡 ∈ ℝ. 

Mathematically OK, but too restrictive for autonomous systems. 

Assumes that 𝜉 is not only continuous, but also differentiable. This disallows 
u(𝑡) to be discontinuous, which is often required for optimal control.
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Is PC input 𝑢 𝑡 adequate for guaranteeing 
existence of solutions? 
Example. �̇� 𝑡 = −𝑠𝑔𝑛 𝑥 𝑡 ; 𝑥$ = 𝑐; 𝑡$ = 0; 𝑐 > 0
Solution: 𝜉 𝑡 = 𝑐 − 𝑡 for 𝑡 ≤ 𝑐; check ̇𝜉 𝑡 = −1 = −sgn 𝜉 𝑡
Problem: Solution undefined at 𝑡 = 𝑐, 𝑓 discontinuous in 𝑥

Example. �̇� 𝑡 = 𝑥%; 𝑥$ = 𝑐; 𝑡$ = 0; 𝑐 > 0
Solution: 𝜉 𝑡 = &

'()&
works for 𝑡 < 1/𝑐; check ̇𝜉

Problem: As 𝑡 → '
&

then 𝑥 𝑡 → ∞; 𝑝 grows too fast

No, we need stronger conditions on smoothness of 𝑓 .
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Lipschitz continuity

A function 𝑓:ℝ* → ℝ is Lipschitz continuous if there exist 𝐿 > 0 such 
that for any pair 𝑥, 𝑥′ ∈ ℝ*, 𝑓 𝑥 − 𝑓 𝑥′ ≤ 𝐿 𝑥 − 𝑥+

Examples: 6𝑥 + 4; 𝑥 ; all differentiable functions with bounded 
derivatives 

Are Lipschitz continuous functions closed under addition, 
multiplication?

Non-examples: 𝑥; 𝑥% (locally Lipschitz) 
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Dynamical Systems Model

Describe behavior in terms of instantaneous laws
𝑑𝑥 𝑡
𝑑𝑡

= 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

𝑡 ∈ ℝ, 𝑥 𝑡 ∈ ℝ* , 𝑢 𝑡 ∈ ℝ,

𝑓:ℝ*×ℝ, → ℝ*dynamic function

Theorem. If 𝑓(𝑥 𝑡 , 𝑢(𝑡)) is Lipschitz continuous in the first argument 
and 𝑢(𝑡) is piece-wise continuous then (1) has unique solutions.



Modified notion of solution*
Definition. 𝑢 ⋅ is a piece-wise continuous with set of discontinuity 
points 𝐷 ⊆ ℝ! if 

(1) ∀𝜏 ∈ 𝐷, lim
"→$!

𝑢 𝑡 < ∞; lim
"→$"

𝑢 𝑡 < ∞

(2) Continuous from right lim
"→$!

𝑢 𝑡 = 𝑢 𝑡

(3) ∀ 𝑡% < 𝑡& , 𝑡%, 𝑡& ∩ 𝐷 is finite 

𝑃𝐶( 𝑡%, 𝑡& , ℝ!) is the set of all piece-wise continuous functions over 
the domain 𝑡%, 𝑡&
Definition 2. Given  𝑥% and  𝑢, 𝜉: ℝ → ℝ' is a solution or trajectory iff
(1) 𝜉 𝑡% = 𝑥% and (2) (

("
𝜉 𝑡 = 𝑓 𝜉 𝑡 , 𝑢 𝑡 , 𝑡 , ∀𝑡 ∈ ℝ\D. 

Since 𝑢 𝑡 is piece-wise continuous, so is 𝑓 in the second argument

𝜏! 𝜏"

𝑢 𝑡
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Control design



Open loop control

PlantController

control signal
𝑢 𝑡 = [𝑎, 𝛿]

Disturbance

𝑥∗



PID control strategy
• Error measured as difference between desired output and measured output

• 𝑒 𝑡 = 𝑦! 𝑡 − 𝑦(𝑡)

• Control input defined as terms proportional to error, integral of error, and derivative of error

• 𝑢 𝑡 = 𝐾.𝑒 𝑡 + 𝐾/ ∫*
- 𝑒 𝜏 𝑑𝜏 + 𝐾0

,1 -
,-

= 𝐾. 𝑒 𝑡 + !
2"
∫*
- 𝑒 𝜏 𝑑𝜏 + 𝑇0

,1 -
,-

• It is necessary to tune these gains of the PID controller
• If the gain is too high the system may become unstable

• If the gain is too low the system may not respond 

• PD control: 𝐾/ = 0 or 𝑇/ = ∞

• PI control: 𝐾0 = 0 = 𝑇0
• P control: 𝐾/ = 0 and 𝐾0 = 0

• Steady state may not be 0



A simple P-controller example

• �̇� 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Using proportional (P) controller
• 𝑢 𝑡 = −𝐾!𝑒 𝑡 = −𝐾!(𝑦 𝑡 − 𝑦" 𝑡 )
• �̇� 𝑡 = −𝐾!𝑦 𝑡 + 𝐾!𝑦" 𝑡 + 𝑑 𝑡
• Consider constant setpoint 𝑦# and disturbance 𝑑$$
• �̇� 𝑡 = −𝐾!𝑦 𝑡 + 𝐾!𝑦# + 𝑑$$
• What is the steady state output? 

• Set −𝐾1𝑦 𝑡 + 𝐾1𝑦' + 𝑑22 = 0

• 𝑦 𝑡 = 𝑦22 =
!33
34
+ 𝑦'



A simple P-controller example

• �̇� 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Consider constant setpoint 𝑦$ and disturbance 𝑑!!
• �̇� 𝑡 = −𝐾H𝑦 𝑡 + 𝐾H𝑦$ + 𝑑!!
• Steady state output 𝑦 𝑡 = 𝑦!! =

"!!
I"
+ 𝑦$

• Transient behavior
• 𝑦 𝑡 = 𝑦 0 𝑒Z[/\ + 𝑦]] 1 − 𝑒Z

!
" , 𝑇 = 1/𝐾^

• To make steady state error small we can increase 𝐾H
at the expense of longer transients



Summary

• ODE language for control systems
• Solutions, Lipschitz continuity, equilibria, steady state, transient

• Control design
• Open loop vs closed loop
• PID design


