Proposition 2 Consider any automaton $A = \langle 9, 9_0, a \rangle$ and a set $I \subseteq Q$ such that (i) (ii) Then

Recall Post(S) = $Post^{R}(S) = S R = 0$ $= Post (Post^{R-1}(S)) R > 0$

Post (.) is mono tonic.

Proof

Base

Remeirk (1) IF we can find an ISQ Satisfying

(i) and (ii) and IN Unsafe = \$\phi\$

then we have proven that all executions of \$A\$

- are Safe [never enter Unsafe].

Romark (2) Prop 2 is IF Thomas
THE
Remark (2) Prop 2 is IF Then not iff it is a Sufficient condition for proving - Postk (Qo) SI.
ter Droving - Post (Qn) SI.

Can you propose an obvious invariant I?

Example from last lecture if $x_2 - x_1 < ds$

 $V_i := \max(o, v, -\alpha_h)$

else U, := U,

 $\chi_2 := \chi_2 + V_2$

24 1= 24 + V,

Unsafe: " $\varkappa_1 = \varkappa_2$ "

Unsafe = { XER4 | X.24 > X.22}

Safe = Unsofe C = & X | X.24 < X.223

Is safe an inductive invariant?

For an arbitrary stale x with X.x < X.xz

We cannot show that if $(x, x') \in D$ the

X' is also safe.

X does not have enough velocity information What if X.V, >> X.xg - X.xy ?

Thus we need to add more
information in X.24 < X.22 / X.V,>
We will also have to add
assumptions about de : Sensing dist
assumptions about ds : Sensing dist ab : braking fore etc
Notice how trying to get an absolute proof is forcing us to "discover" assumptions that make the system work
is forcing us to "discover" assumptions
that make the system work
New idea for I. bound max time of braking
Back to our example with small mods
initially
$\chi_1 = \chi_{10} \chi_2 = \chi_{20} \mathcal{V}_1 = \mathcal{V}_{10} \mathcal{V}_2 = 0$
timer = 0
if

Candidale	invariant:	timer d	+ V, ===================================	$\leq \frac{V_0}{a_h}$	$-\Im_{z}$		
Claim:	I_2 is an						
Proof	_						
					•		
					,		
			,				
·							
=> Iz is an invariant							
in any execution at any step							

a[k]. timer + a[k].v, ≤ vo ab => &[k].timer < V10 Is this enough to infer Safety? No, what if do is too small for this tio time & 200? Maximum distance traveled ofter detection Vio. timer & Dio. Vio So, if $ds > v_0^2/a_h$ then $\tilde{I}_2 \Rightarrow S_{afe}$ Final statement. If the sensing range ds > 2010/96 then in any reachable state x2 > 21, sie. there is no collision.