Automata / state machines

- What is an automaton?
- What are behaviors of automata? Executions
- What are safety requirements?
- Why is safety analysis of automata hard?
- Basic method for proving safety of all executions

An automaton / state machine A is defined by:

- A set of states \mathcal{Q}
- A start set $\mathcal{Q}_0 \subseteq \mathcal{Q}$
- A set of transitions $\mathcal{D} \subseteq \mathcal{Q} \times \mathcal{Q}$

Example: Cruise control logic

$A:$

Drawing states and arrows gets messy

We use programs to describe automata!
Determinism / Non determinism

Deterministic automaton Non determinism

- Models arbitrary choice
 - e.g. Failure, decisions

So given a state \(q \in Q \) there are many possible "next" states.
Example 2 (Slides first) Car 1 Car 2

\[\begin{align*}
\text{State} & \quad \text{vector} \\
0 & \quad x_{10} \quad x_{20} \quad \rightarrow x
\end{align*} \]

\[G = \mathbb{R}^4 \]

\[G_0 = \tilde{x}_0 := \]

\[\mathcal{D} \subseteq \mathbb{R}^4 \times \mathbb{R}^4 \]

\[\text{Eg. if } x_2 - x_1 < d_s \]

\[v_1 := \max(0, v_1 - a_b) \]

\[\text{else } v_1 := v_1 \]

\[x_2 := x_2 + v_2 \]

\[x_1 := x_1 + v_1 \]

What does this really define?

\[\mathcal{F} = \{ (x, x') \in \mathbb{R}^4 \times \mathbb{R}^4 \} \]

This representation of \(\mathcal{F} \) will be important when we want to work with sets of states.
This example is deterministic

Ex: Make it non deterministic

Execution

An execution is a particular behavior of \(A \)

\[\alpha = q_0, q_1, \ldots, q_k \quad \text{finite or infinite} \]

(i) \(q_0 \in Q \)

(ii) \(\forall i \quad (q_i, q_{i+1}) \in \Delta \)

Nondeterministic automata can have many executions e.g. \(\text{off, cl, cl, ch} \)

\(\text{off, cl, off, cl} \)

If \(\alpha \) is an execution \(\alpha = q_0, q_1, \ldots \) the \(i \text{th} \) state in \(\alpha \) is written as \(\alpha[i] = q_i \)
Requirements (Safety & Unsafety)

A requirement for A is any statement/formula involving the states in \mathcal{S} that is satisfied by all executions of A.

Example: • "Car 1 should never come within 0.5m of Car 2."

$P_1 : \"x_2 - x_1 \geq 0.5\"$

$P_1 = \{x \in \mathbb{R}^4 | x \cdot x_2 - x \cdot x_1 \geq 0.5\}$

• "Car should never exceed speed limit" : U

• "always \geq 25 mpg" : P_2

With a single test/execution we can check whether every state in the execution satisfies the requirement or not, or equivalently does not satisfy the unsafety requirement (U).
To generate individual tests we can “just run” the program representing \mathcal{F}.

But, to cover all behaviors/executions we have to work with sets of states.

Def 1 For $\mathcal{A} = \langle \mathcal{O}, \mathcal{O}_0, \delta \rangle$ any set $S \subseteq \mathcal{O}$

$$Post(S) = \{ \}$$

Exercise (monotonic)

Def 2

$$Post^0(S) := S$$

$$Post^k(S) := Post(\text{Post}^{k-1}(S)) \quad k > 0$$

Proposition The set of states R^k that R can reach after k-transitions (at the end of executions of length k) is $Post^k(\mathcal{O}_0)$.

ICYAI In Case You Are Interested
Proof: \(R^k \) = states that are at the end of executions of length \(k \).

We have to show (i) \(R^k \subseteq Post^k(G_0) \) and (ii) \(Post^k(G_0) \subseteq R^k \).

(i) Proof by induction on \(k \).

Base. \(R^0 = G_0 \) by def of execution of length 0.

\[Post^0(G_0) = G_0 \] by def of \(Post^k \)

Therefore \(R^0 \subseteq Post^0(G_0) \).

Induction. Suppose \(R^k \subseteq Post^k(G_0) \) \(-1\)

Now consider \(R^{k+1} \) for any \(x \in R^{k+1} \) \(\exists \) execution \(f \) length \(k \) with last state \(x' \in R^k \) by \(-1\)

and \((x', x) \in \delta \)

\[\Rightarrow x' \in Post(x) \subseteq Post(R^k) \leq Post(Post^k(G_0)) \text{ by } \text{-1} \]

\[\Rightarrow x' \in Post^{k+1}(G_0) \]

\[R^{k} \subseteq Post^{k}(G_0) \text{ and } k \]

(ii) \(Post^k(G_0) \subseteq R^k \)

Base case: same as above.

Induction: hypothesis \(Post^k(G_0) \subseteq R^k \) \(-2\)
Now consider \(x \in \text{Post}^{k+1}(\mathcal{G}_0) \) there must be \(\alpha' \) an execution of length \(k \) with last state \(x' \) in \(\text{Post}^k(\mathcal{G}_0) \) by (2) and \((x',x) \in \mathcal{D} \).

Then \(\alpha'x \) is an exec of length \(k+1 \) with \(x \in R^{k+1} \) \(\text{Post}^{k+1}(\mathcal{G}) \subseteq R^{k+1} \) \(\square \)

To prove that all executions are safe forever we would want to compute

\[\text{Prop2} \]

If we can find a set \(I \subseteq \mathcal{G} \) such that

\[(i) \quad \mathcal{G}_0 \subseteq I \]
\[(ii) \quad \text{Post}(I) \subseteq I \]

Idea. Approximate \(\text{Post}^R(\mathcal{G}_0) \)
Then \(\text{Post}^k(Q_0) \subseteq I \leq \forall k \).

I over approximates \(\text{Post}^k(Q_0) \).

Proof. Induction on \(k \).

Such an \(I \) is called an Inductive invariant of \(A \).

- If we can find \(I \) and \(I \cap \text{Unsat} = \emptyset \)
 we have shown that all executions of \(A \) are safe.