Principles of Safe Autonomy
Lecture 4:
Basic Perception -> Edge Detection

Sayan Mitra
slides from Svetlana Lazebnik
Autonomy pipeline

Sensing
Physics-based models of camera, LIDAR, RADAR, GPS, etc.

Perception
Programs for object detection, lane tracking, scene understanding, etc.

Decisions and planning
Programs and multi-agent models of pedestrians, cars, etc.

Control
Dynamical models of engine, powertrain, steering, tires, etc.
Control
Dynamical models of engine, powertrain, steering, tires, etc.

Decisions and planning
Programs and multi-agent models of pedestrians, cars, etc.

Perception
Programs for object detection, lane tracking, scene understanding, etc.
Perception: EM to objects

Problem: Process electromagnetic radiation from the environment to construct a *model* of the world, so that the constructed model is close to the real world.

Challenging for computers: millions of years of evolution

Ill-defined problem: impossibility of defining meaning “car”, “bicycle”, etc.
A practical perception pipeline in an AV has many pieces

This architecture from a slide from M. James of Toyota Research Institute, North America
Outline

- Linear filtering
- Edge detection
Motivation: Image denoising

• How can we reduce noise in a photograph?
Image representation

Images are represented as 2D arrays of pixels. Each pixel is represented by (array of) value(s) representing its color.

```python
# read an image
img = cv2.imread('images/noguchi02.jpg')

# show image format (basically a 3-d array of pixel color info, in BGR format)
print(img)
```

Where [72 99 143] is the blue, green, and red values of that pixel.

We will work with grayscale images.

Denote by img[i,j] (or f[i,j]) the value of the i,j-th pixel.
What is filtering?

Modify the pixels in an image based on some function of a local neighborhood of the pixels.

Bright(img, k): for all i, j
 \[\text{img}'[i][j] = k \times \text{img}[i][j]\]

Shifting right by s Shift(img, s):
 \[\text{img}'[k] = \text{img}[k-s]; \text{img}'[0]...\text{img}'[s-1] \text{ is undefined}\]

Simplest: Linear filtering
 replace each pixel by a linear combination of neighbors
Moving average

- Let’s replace each pixel with a *weighted* average of its neighborhood
- The weights are called the *filter kernel*
- What are the weights for the average of a 3x3 neighborhood?

![Box filter](image)
Convolution

Output or convolved image

\[f[i,j] = g[1,1] \text{img}[i-1,j-1] + g[1,2] \text{img}[i-1,j] + g[1,3] \text{img}[i-1,j+1] + g[2,1] \text{img}[i,j-1] + g[2,2] \text{img}[i,j] + g[2,3] \text{img}[i,j+1] + g[3,1] \text{img}[i+1,j-1] + g[3,2] \text{img}[i+1,j] + g[3,3] \text{img}[i+1,j+1] \]
Defining convolution

- Let \(f \) be the image and \(g \) be the kernel. The output of convolving \(f \) with \(g \) is denoted \(f \ast g \).

\[
(f \ast g)[m, n] = \sum_{k,l} f[m-k, n-l]g[k, l]
\]

Convention: kernel is “flipped”

Source: F. Durand
For analysis we will work with 1D images

- Let f be the image and g be the kernel. The output of convolving f with g is denoted $f * g$.

$$(f * g)[m] = \sum_k f[m - k]g[k]$$
Key properties: Prove the first two

- **Shift invariance**: same behavior regardless of pixel location:
 \[
 \text{filter(shift}(f)) = \text{shift(filter}(f))
 \]

- **Linearity**:
 \[
 \text{filter}(f_1 + f_2) = \text{filter}(f_1) + \text{filter}(f_2)
 \]

- **Theoretical result**: any linear shift-invariant operator can be represented as a convolution
Properties in more detail

- **Commutative:** \(a \ast b = b \ast a \)
 - Conceptually no difference between filter and signal

- **Associative:** \(a \ast (b \ast c) = (a \ast b) \ast c \)
 - Often apply several filters one after another: \(((a \ast b_1) \ast b_2) \ast b_3)\)
 - This is equivalent to applying one filter: \(a \ast (b_1 \ast b_2 \ast b_3)\)

- **Distributes over addition:** \(a \ast (b + c) = (a \ast b) + (a \ast c) \)

- **Scalars factor out:** \(ka \ast b = a \ast kb = k(a \ast b)\)

- **Identity:** unit impulse \(e = [..., 0, 0, 1, 0, 0, ...]\), \(a \ast e = a\)
openCV: **filter2D**

Output image same size as input

Multi-channel: each channel is processed independently

Extrapolation of border

Examples
Practice with linear filters

Original

0 0 0
0 1 0
0 0 0

?
Practice with linear filters

Original

Filtered (no change)

Source: D. Lowe
Practice with linear filters

Original

? Source: D. Lowe
Practice with linear filters

Original

Shifted left
By 1 pixel

Source: D. Lowe
Practice with linear filters

Original

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Source: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

Source: D. Lowe
Practice with linear filters

Original

(Note that filter sums to 1)
Practice with linear filters

Original

Sharpening filter
- Accentuates differences with local average

Source: D. Lowe
Sharpening

before

after

Source: D. Lowe
Sharpening

What does blurring take away?

Let’s add it back:
Smoothing with box filter revisited

• What’s wrong with this picture?
• What’s the solution?

Source: D. Forsyth
Smoothing with box filter revisited

• What’s wrong with this picture?
• What’s the solution?
 • To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

“fuzzy blob”
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi \sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003</td>
<td>0.013</td>
<td>0.022</td>
<td>0.013</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>0.013</td>
<td>0.059</td>
<td>0.097</td>
<td>0.059</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>0.097</td>
<td>0.159</td>
<td>0.097</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>0.013</td>
<td>0.059</td>
<td>0.097</td>
<td>0.059</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>0.013</td>
<td>0.022</td>
<td>0.013</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

5 x 5, \(\sigma = 1 \)

Source: C. Rasmussen
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

\(\sigma = 2 \) with 30 x 30 kernel

\(\sigma = 5 \) with 30 x 30 kernel

Standard deviation \(\sigma \): determines extent of smoothing

Source: K. Grauman
Choosing kernel width

The Gaussian function has infinite support, but discrete filters use finite kernels.

Source: K. Grauman
Choosing kernel width

Rule of thumb: set filter half-width to about 3σ
Gaussian vs. box filtering
Gaussian filters

• Remove high-frequency components from the image (*low-pass filter*)

• Convolution with self is another Gaussian
 • So can smooth with small-\(\sigma\) kernel, repeat, and get same result as larger-\(\sigma\) kernel would have
 • Convolving two times with Gaussian kernel with std. dev. \(\sigma\) is same as convolving once with kernel with std. dev. \(\sigma\sqrt{2}\)

• *Separable* kernel
 • Factors into product of two 1D Gaussians
 • Discrete example:

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
2 \\
1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 \\
1 \\
1 \\
\end{bmatrix}
\]
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x \) and the other a function of \(y \).

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe
Why is separability useful?

• Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)

• What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 • $O(n^2 m^2)$

• What if the kernel is separable?
 • $O(n^2 m)$
Noise

- **Salt and pepper noise**: contains random occurrences of black and white pixels
- **Impulse noise**: contains random occurrences of white pixels
- **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz
Reducing salt-and-pepper noise

What’s wrong with the results?
Alternative idea: Median filtering

- A **median filter** operates over a window by selecting the median intensity in the window.

![Median filter example](image)

- Is median filtering linear?

Source: K. Grauman
Median filter

- Is median filtering linear?
- Let’s try filtering

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 2
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

<table>
<thead>
<tr>
<th>INPUT</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋯⋯⋯⋯⋯⋯</td>
<td>⋯⋯⋯⋯⋯⋯</td>
<td>⋯⋯⋯⋯⋯⋯</td>
</tr>
</tbody>
</table>
Median filter

Salt-and-pepper noise

Median filtered

open cv: `cv2.medianBlur (input, output,ksize)`

Source: M. Hebert
Gaussian vs. median filtering

3x3 5x5 7x7

Gaussian

Median
Review: Image filtering

- Convolution
- Box vs. Gaussian filter
- Separability
- Median filter
Edge detection

Winter in Kraków photographed by Marcin Ryczek
Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
- Intuitively, edges carry most of the semantic and shape information from the image
 - E.g., Lanes, traffic signs, cars

Sources: D. Lowe and S. Seitz
Edge detection

• An edge is a place of rapid change in the image intensity function.
Derivatives with convolution

For 2D function $f(x,y)$, the partial derivative w.r.t x is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x + 1, y) - f(x, y)}{1}$$

To implement the above as convolution, what would be the associated filter?
Convolution

Convolution mask $g[,]$

Output or convolved image

$$f = g \ast \text{img}$$

$$f[i,j] = -1 \cdot \text{img}[i,j-1] + 1 \cdot \text{img}[i,j]$$
Partial derivatives of an image

\[\frac{\partial f(x, y)}{\partial x} \]

\[\frac{\partial f(x, y)}{\partial y} \]

Which shows changes with respect to x?
Finite difference filters

Other approximations of derivative filters exist:

- **Prewitt:**
 \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}; \quad M_y = \begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ -1 \\ 0 \\ -1 \end{bmatrix} \]

- **Sobel:**
 \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}; \quad M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]

- **Roberts:**
 \[M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}; \quad M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]
Kahoot!
The gradient of an image: \[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

The gradient points in the direction of most rapid increase in intensity

- How does this direction relate to the direction of the edge?

The gradient direction is given by \[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

The edge strength is given by the gradient magnitude (norm)

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]
Effects of noise

Consider a single row or column of the image

Where is the edge?

Source: S. Seitz
Solution: smooth first

- To find edges, look for peaks in $\frac{d}{dx} (f * g)$

Source: S. Seitz
Differentiation is convolution, and convolution is associative:

\[
\frac{d}{dx} (f \ast g) = f \ast \frac{d}{dx} g
\]

This saves us one operation:

Source: S. Seitz
Derivative of Gaussian filters

Which one finds horizontal/vertical edges?
Derivative of Gaussian filters

Are these filters separable?
Recall: Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-x^2}{2\sigma^2}\right)\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-y^2}{2\sigma^2}\right)\right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x \) and the other a function of \(y \).

In this case, the two functions are the (identical) 1D Gaussian.
Smoothed derivative removes noise, but blurs edge
Also finds edges at different “scales”

Source: D. Forsyth
Review: Smoothing vs. derivative filters

Smoothing filters
- Gaussian: remove “high-frequency” components; “low-pass” filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - **One:** constant regions are not affected by the filter

Derivative filters
- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - **Zero:** no response in constant regions
Building an edge detector

Original Image

Edge Image

original image

Grad output

norm of the gradient

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
Building an edge detector

Thresholded norm of the gradient

How to turn these thick regions of the gradient into curves?
Non-maximum suppression

- For each location q above threshold, check that the gradient magnitude is higher than at neighbors p and r along the direction of the gradient
 - May need to interpolate to get the magnitudes at p and r
Non-maximum suppression

Another problem: pixels along this edge didn’t survive thresholding
Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.
Hysteresis thresholding

original image

high threshold (strong edges) low threshold (weak edges) hysteresis threshold

Source: L. Fei-Fei
Recap: Canny edge detector

1. Compute x and y gradient images
2. Find magnitude and orientation of gradient
3. **Non-maximum suppression:**
 - Thin wide “ridges” down to single pixel width
4. **Linking and thresholding (hysteresis):**
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

opencv: `canny(image, th1, th2)`

Summary

- Convolution as translation invariant linear operations on signals and images
- Definition of convolution and its properties (associativity, commutativity, etc.)
- Artifacts of hard-edge kernels
- Gaussian kernel, its definition and properties (separability)
- Median filter, sharpening
- Derivatives as convolution (Sobel, etc.)
Sharpening

What does blurring take away?

Let's add it back:
Unsharp mask filter

\[f + \alpha(f - f * g) = (1 + \alpha)f - \alpha f * g = f * ((1 + \alpha)e - g) \]