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Last time on how to assure safety of an 
autonomous system

“Testing can be used to show the presence of bugs, but never to show their absence!’’ --- Edsger W. Dijkstra

Because there are infinitely many executions and we can only test finitely many of those in any testing 
algorithm

In a probabilistic sense also, purely using data to gain safety assurance is not practical

Data required to guarantee a probability of 10−9 fatality per hour of driving is proportional to its inverse, 109 

hours, 30 billion miles

To learn or extrapolate about all---infinitely many---executions from a finite sampling of  executions, we need to 
make some assumptions about the system. A collection of these assumptions defines a model

On a Formal Model of Safe and Scalable Self-driving Cars by 
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017 
(Responsibility Sensitive Safety)

https://arxiv.org/pdf/1708.06374.pdf


Roadmap
▶ A simple class of models: automata.
▶What are executions of automata: sequence of states
▶What are requirements?
▶Reachable states, why we care to compute and why that can be hard
▶ Invariants as approximations of reachable states



Model (switch to notes)



A “simple” safety scenario

A car moving down a straight road has to detect any 
pedestrian in front of it and stop before it collides.

Automatic Emergency Braking

Not a trivial requirement



“simple”≠ Easy



MP0: Simulate model for testing



“All models are wrong, some are useful.”



Wrong and useless models



Baked-in Assumptions in our example

▶Perception. 
▶ Sensor detects obstacle iff distance 𝑑 ≤ 𝐷!"#!"
▶ No false positives, negatives, probabilities
▶ Pedestrian is known to be moving with constant 

velocity from initial position. This will be used in 
the safety analysis, but not in the vehicle's 
automatic braking algorithm

▶No sensing-computation-actuation delay. 
▶ The time step in which 𝑑 ≤ 𝐷!"#!" becomes 

smaller is exactly when the velocity starts to 
decrease



Baked-in Assumptions (continued)

▶Mechanical or Dynamical assumptions
▶ Vehicle and pedestrian moving in 1-D lane.
▶ Does not go backwards.
▶ Perfect discrete kinematic model for velocity and acceleration.

▶Nature of time
▶ Discrete steps. Each execution of the above function models 

advancement of time by 1 step. If 1 step = 1 second, 𝑥! 𝑡 + 1 =
𝑥! 𝑡 + 𝑣! 𝑡 . 1
▶ We cannot talk about what happens between [t, t+1] 

▶ Atomic steps. 1 step = complete (atomic) execution of the program. 
▶ We cannot directly talk about the states visited after partial execution of 

program
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Summary

▶Absolute safety checking boils down to showing that none of the executions of 
the automaton reaches an unsafe set U

▶ To reason about all executions of we have to work with infinite sets of states
▶One way to compute infinite sets is using the Post operator
▶But, computing all executions for unbounded time can be hard
▶ If we can guess an invariant satisfying conditions of Proposition 1.1, that can 

give a shortcut for proving safety
▶ The inavariant may contain important information about conserved quantities, 

and thus, may tell us why the system is safe, and not just that it is so
▶Mind the gap between model and reality
▶Next. Application of invariants in braking example


