Decision Making III

Katie DC

Markov Models

Challenges for Reinforcement Learning

1. Exploration of the world must be balanced with exploitation of the knowledge gained through previous experience
2. Reward may be received long after important choices have been made, so credit must be assigned to earlier decisions
3. Must generalize from limited experience

There are many solutions to this problem!
For a comprehensive overview, check out Reinforcement Learning: An Introduction by Sutton and Barto.

Reinforcement Learning

not given T or R directly
\rightarrow must learn through experience

Goal: determine optimal actions that maximize expected reward

$$
\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}
$$

solution methods:

- model based
- model free

Q-learning: Model-free method: Q-Learning

- Agent gathers experience: (s, a, r, s^{\prime})
- Q-function returns the expected reward of that action at that state
- Temporal Differences to estimate optimal value Q^{*} for each state
- Agent maintains Q -table of all Q values for each state s and action a

Incremental Estimation
suppose we have a random variable X how to estimate mean given samples $x_{1: n}$?

$$
\hat{x}_{n}=1 / n \sum_{i=1}^{n} x_{i}
$$

we can show that

$$
\hat{x}_{n}=\hat{x}_{n-1}+\ln _{\alpha}(n) \rightarrow \text { learning rate, often constant }
$$

$$
\hat{x}<\hat{x}+\alpha \underbrace{(x-\hat{x})}_{\text {tempos }}
$$

Incremental Estimation Example
current mean estimate of $3=\hat{x}$
new sample: $x=1$

$$
\begin{aligned}
& \quad \hat{x} \leftarrow \hat{x}+\alpha(x-\hat{x}) \\
& \text { if } \alpha=.1 \\
& \quad \hat{x} \leftarrow 3+.1(7-3)=3.4 \\
& \text { if } \alpha=.5 \\
& \quad \hat{x} \leftarrow 3+.5(7-3)=5
\end{aligned}
$$

Q-Learning (1)
Key idea: apply incremental estimation to Bellman eq.

$$
\begin{aligned}
Q(s, a) & =R(s, a)+\gamma \sum_{s^{\prime}} T\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right) \\
& =R(s, a)+\gamma \sum_{s^{\prime}} T\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)
\end{aligned}
$$

since we dort have T or R, use observed next states' $+r$ to estimate the Q valeres use the following incremental update rule:

$$
\begin{aligned}
& \text { the following incremental upolate rule: } \\
& Q(s, a) \leftarrow Q(s, a)+\alpha\left(r+\gamma^{\max } Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)
\end{aligned}
$$

Q-Learning (2)

Q-Learning Algorithm

function Qlearning

$t \leftarrow 0$
$\mathrm{s}_{0} \leftarrow$ initial state
Initialize Q
loop
Choose action a_{t} based on Q and some exploration strategy Observe new state s_{t+1} and reward r_{t}

$$
\begin{aligned}
& Q\left(s_{t}, a_{t}\right) \leftarrow Q\left(s_{t}, a_{t}\right)+\alpha\left(r_{t}+\gamma \max _{a} Q\left(s_{t+1}, a^{\prime}\right)-Q\left(s_{t}, a_{t}\right)\right) \\
& t \leftarrow t+1
\end{aligned}
$$

Q-Learning Challenges

- How should an agent decide which actions to choose to explore?
- One way to define probabilistic exploration strategy, using the Boltzmann distribution:

$$
P(\mathrm{a} \mid \mathrm{s})=\frac{\mathrm{e}^{Q(s, a) / k}}{\sum_{j} e^{Q\left(s, a_{j}\right) / k}}
$$

The k parameter (called temperature) controls probability of picking non-optimal actions. If k is large, all actions are chosen uniformly (explore), if k is small, then the best actions are chosen.

Q-Learning Challenges

- How should an agent decide which actions to choose to explore?
- The Q Table can be thought of as a cheat sheet. How many states and actions must be stored for a game of chess?
- Another issue generally in RL: How to know if reward is correct? How do we best shape the reward to get a desirable outcome? Is that okay?

DQN: approximate Q with deep network

- target $=R\left(s, a, s^{\prime}\right)+\gamma \max _{a \prime} Q_{k}\left(s^{\prime}, a^{\prime}\right)$
${ }^{\prime}$
- $Q_{k+1}(s, a) \leftarrow(1-\alpha) Q_{k}(s, a)+\alpha[$ target $]$
- Goal is to approximate our Q table with a deep network that will act as a Q Function

```
function DQN
    sorinitial state
    Initialize Q (0
    for k=1,2,..
    Choose action }\mp@subsup{a}{t}{}/\mathrm{ Observe new state }\mp@subsup{s}{t+1}{}\mathrm{ and reward }\mp@subsup{r}{t}{
    target =R(s,a,\mp@subsup{s}{}{\prime})+\gamma \mp@subsup{\operatorname{max}}{a}{\prime}\mp@subsup{Q}{k}{}(\mp@subsup{s}{}{\prime},\mp@subsup{a}{}{\prime})
    \mp@subsup{0}{k+1}{}\leftarrow\mp@subsup{0}{k}{}+\alpha\nabla\mp@subsup{\mathbb{E}}{\mp@subsup{s}{}{\prime}~P(\mp@subsup{s}{}{\prime}|s,a)}{}[\mp@subsup{Q}{0}{}(s,a)-\operatorname{target}(\mp@subsup{\textrm{s}}{}{\prime})]}\mp@subsup{|}{0=\mp@subsup{0}{k}{}}{
    s\leftarrow\mp@subsup{s}{}{\prime}
```


DQN Challenges

- Deep learning works for supervised learning under these conditions:
- Samples are i.i.d., meaning that each batch has the same distribution and all samples are independent within the batch
- For some input, the label is consistent across time
- In RL, these typically do not hold
- Target is unstable!
- Not iid: when parameters are updated, local states are also effected
- Actions are chosen by estimated Q (we choose what to explore or exploit), this means our target output (action) is constantly changing as well
function DQN
$\mathrm{s}_{0} \leftarrow$ initial state Initialize Q_{0}
for $k=1,2, .$.
Choose action a_{t} / Observe new state s_{t+1} and reward r target $=R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)$
$\theta_{k+1} \leftarrow \theta_{k}+\left.\alpha \nabla \mathbb{E}_{s^{\prime} \sim P\left(s^{\prime} \mid s, a\right)}\left[\mathrm{Q}_{\theta}(s, a)-\operatorname{target}\left(\mathrm{s}^{\prime}\right)\right]\right|_{\theta=}$ $s \leftarrow s^{\prime}$
correlation within
trajectories

DQN Solutions

- Experience Replay
- Say you store 10^{6} transitions and use a batch size of 32 to train the network.
- Sampling from this buffer forms a dataset that is close to iid and therefore stable
- Target network:
- Use two deep networks! θ^{-}and θ.
- First retrieves Q values and the second updates in the training. By temporarily fixing the Q -value targets, the moving target issue is solved.
- $L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a, s^{\prime}, r \sim D}\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i}^{-}\right)-Q\left(s, a, ; \theta_{i}\right)\right)^{2}$

DQN Algorithm

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory }D\mathrm{ to capacity }
Initialize action-value function Q with random weights }
Initialize target action-value function \hat{Q}\mathrm{ with weights }\mp@subsup{0}{}{-}=0
For episode = 1,M do
    Initialize sequence s}\mp@subsup{s}{1}{}={\mp@subsup{x}{1}{}}\mathrm{ and preprocessed sequence }\mp@subsup{\phi}{1}{}=\phi(\mp@subsup{s}{1}{}
    For t=1,T do
    With probability }\varepsilon\mathrm{ select a random action }\mp@subsup{a}{t}{
    otherwise select }\mp@subsup{a}{t}{}=\mp@subsup{\operatorname{argmax}}{a}{}Q(\phi(\mp@subsup{s}{t}{}),a;0
    Execute action }\mp@subsup{a}{t}{}\mathrm{ in emulator and observe reward }\mp@subsup{r}{t}{}\mathrm{ and image }\mp@subsup{x}{t+1}{
    Set }\mp@subsup{s}{t+1}{}=\mp@subsup{s}{t}{},\mp@subsup{a}{t}{},\mp@subsup{x}{t+1}{}\mathrm{ and preprocess }\mp@subsup{\phi}{t+1}{}=\phi(\mp@subsup{s}{t+1}{}
    Store transition ( }\mp@subsup{\phi}{t}{},\mp@subsup{a}{t}{},\mp@subsup{r}{t}{},\mp@subsup{\phi}{t+1}{})\mathrm{ in D
    Sample random minibatch of transitions ( }\mp@subsup{\phi}{j}{},\mp@subsup{a}{j}{},\mp@subsup{r}{j}{};\mp@subsup{\phi}{j+1}{})\mathrm{ from D
    Set y y = {}\begin{array}{cc}{\mp@subsup{r}{j}{\prime}}&{\mathrm{ if episode terminates at step j+1}}\\{\mp@subsup{r}{j}{}+\gamma\mp@subsup{\operatorname{max}}{\mp@subsup{\alpha}{}{\prime}}{\prime}}&{\hat{Q}(\mp@subsup{\phi}{j+1}{\prime},\mp@subsup{a}{}{\prime};\mp@subsup{0}{}{-})}
    Perform a gradient descent step on (\mp@subsup{y}{j}{}-Q(\mp@subsup{\phi}{j}{},\mp@subsup{a}{j}{};0))\mp@subsup{)}{}{2}\mathrm{ with respect to the}
    network parameters }
    Every C steps reset \hat{Q}=Q
    End For
End For
```

Initialize action-value function Q with random weights θ
Initialize target action-value function \hat{Q} with weights $\theta^{-}=\theta$
For episode =1, M do
Initialize sequence $s_{1}=\left\{x_{1}\right\}$ and preprocessed sequence $\phi_{1}=\phi\left(s_{1}\right)$
For $t=1, \mathrm{~T}$ do
With probability ε select a random action a_{t}
otherwise select $a_{t}=\operatorname{argmax}_{a} Q\left(\phi\left(s_{t}\right), a ; \theta\right)$
Execute action a_{t} in emulator and observe reward r_{t} and image x_{t+1}
Set $s_{t+1}=s_{t}, a_{t}, x_{t+1}$ and preprocess $\phi_{t+1}=\phi\left(s_{t+1}\right)$
Store transition $\left(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\right)$ in D
Set $y_{j}= \begin{cases}r_{j} & \text { if episode terminates at step } \mathrm{j}+1\end{cases}$
Perform a gradient descent step on $\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}$ with respect to the network parameters θ
Every C steps reset $\hat{Q}=Q$

End Fo

ε-greedy
$P(a \mid s)= \begin{cases}\varepsilon / m+1-\varepsilon, & \text { if } \\ \varepsilon / m, & \text { ow }\end{cases}$

