
Decision Making III
Katie DC

Markov Models

Markov Decision Processes (MDP) Partially Observable MDP Reinforcement Learning

Uncertainty in effects of actions Uncertainty in current state Uncertainty in model

2 3

1

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

2 3

1

A B

A

B B

A
?

?

?

?

?
?

?

?

?

? ?

?

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

Challenges for Reinforcement Learning

1. Exploration of the world must be balanced with exploitation of the
knowledge gained through previous experience

2. Reward may be received long after important choices have been
made, so credit must be assigned to earlier decisions

3. Must generalize from limited experience

There are many solutions to this problem!

For a comprehensive overview, check out Reinforcement Learning: An
Introduction by Sutton and Barto.

Reinforcement Learning

Q-learning: Model-free method: Q-Learning

• Agent gathers experience: (𝑠, 𝑎, 𝑟, 𝑠′)

• Q-function returns the expected reward of that action at that state

• Temporal Differences to estimate optimal value Q∗ for each state

• Agent maintains Q-table of all 𝑄 values for each state 𝑠 and action 𝑎

Incremental Estimation

Incremental Estimation Example

Q-Learning (1)

Q-Learning (2)

Q-Learning Algorithm

Initialize Q-Table

Choose Action

Execute Action

Get Observation
and Reward

Update Q-Table

function Qlearning
𝑡 ← 0
s0 ←initial state
Initialize Q
loop

Choose action 𝑎𝑡 based on 𝑄 and some exploration strategy
Observe new state 𝑠𝑡+1 and reward 𝑟𝑡

𝑄 𝑠𝑡 , 𝑎𝑡 ← 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 𝑟𝑡 + 𝛾max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄 𝑠𝑡 , 𝑎𝑡

𝑡 ← 𝑡 + 1

Q-Learning Challenges

• How should an agent decide which actions to choose to explore?

• One way to define probabilistic exploration strategy, using the Boltzmann
distribution:

𝑃 a s =
e Τ𝑄(𝑠,𝑎) 𝑘

σ𝑗 𝑒
Τ𝑄 𝑠,𝑎𝑗 𝑘

The 𝑘 parameter (called temperature) controls probability of picking
non-optimal actions. If 𝑘 is large, all actions are chosen uniformly
(explore), if 𝑘 is small, then the best actions are chosen.

Q-Learning Challenges

• How should an agent decide which actions to choose to explore?

• The Q Table can be thought of as a cheat sheet. How many states and
actions must be stored for a game of chess?

• Another issue generally in RL: How to know if reward is correct? How do
we best shape the reward to get a desirable outcome? Is that okay?

DQN: approximate Q with deep network

• target = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)

• 𝑄𝑘+1 𝑠, 𝑎 ← 1 − 𝛼 𝑄𝑘 𝑠, 𝑎 + 𝛼[target]

• Goal is to approximate our Q table with a deep network that will act
as a Q Function

function DQN
s0 ←initial state
Initialize Q0

for k = 1,2,…
Choose action 𝑎𝑡 / Observe new state 𝑠𝑡+1 and reward 𝑟𝑡
target = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max

𝑎′
𝑄𝑘(𝑠

′, 𝑎′)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝔼𝑠′~𝑃(𝑠′|𝑠,𝑎) Q𝜃 𝑠, 𝑎 − target s′ ቚ
𝜃=𝜃𝑘

𝑠 ← 𝑠′

DQN Challenges

• Deep learning works for supervised learning under these conditions:
• Samples are i.i.d., meaning that each batch has the same distribution and all

samples are independent within the batch

• For some input, the label is consistent across time

function DQN
s0 ←initial state
Initialize Q0

for k = 1,2,…
Choose action 𝑎𝑡 / Observe new state 𝑠𝑡+1 and reward 𝑟𝑡
target = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max

𝑎′
𝑄𝑘(𝑠

′, 𝑎′)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝔼𝑠′~𝑃(𝑠′|𝑠,𝑎) Q𝜃 𝑠, 𝑎 − target s′ ቚ
𝜃=𝜃

𝑠 ← 𝑠′

• In RL, these typically do not hold
• Target is unstable!
• Not iid: when parameters are updated,

local states are also effected
• Actions are chosen by estimated Q (we

choose what to explore or exploit), this
means our target output (action) is
constantly changing as well

DQN Solutions

• Experience Replay
• Say you store 106 transitions and use a batch size of 32 to train the network.

• Sampling from this buffer forms a dataset that is close to iid and therefore
stable

• Target network:
• Use two deep networks! 𝜃− and 𝜃.

• First retrieves Q values and the second updates in the training. By temporarily
fixing the Q-value targets, the moving target issue is solved.

• 𝐿𝑖 𝜃𝑖 = 𝔼𝑠,𝑎,𝑠′,𝑟~𝐷 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; 𝜃𝑖
− − 𝑄 𝑠, 𝑎, ; 𝜃𝑖

2

DQN Algorithm

