MP3: Filtering and Localization

Eric Liang
Overview

- 3 Written Questions, 4 Implementation Questions
- **Written Questions:**
 - Bayes Filter
 - Particle Filter
 - MP0 Revisited
- **Implementation Questions**
 - Number of Particles
 - Sensor Limit
 - Environment
 - Sensor Model
Module Architecture

Gazebo Simulator

Vehicle Model and Controller
(vehicle.py & controller.py)

Lidar Processing
(lidarProcessing.py)

Robot
(maze.py)

Monte Carlo Localization
(particle_filter.py)

Map
(maze.py)

Sensor Model
(maze.py)

Particles
(maze.py)

Sensor Reading

Raw lidar point cloud

x, y, theta

control signal u

estimated state

state of particles

Sensor Reading For Particles
Particle Filter: Main Function

\[X_t = x_t^{[1]}, x_t^{[2]}, \ldots, x_t^{[M]} \] particles

Algorithm MCL(\(X_{t-1}, u_t, z_t, m\)):
\[\tilde{X}_{t-1} = X_t = \emptyset \]
for all \(m \) in \([M]\) do:
\[x_t^{[m]} = \text{sample_motion_model}(u_t, x_t^{[m]}) \]
\[w_t^{[m]} = \text{measurement_model}(z_t, x_t^{[m]}, m) \]
\[\tilde{X}_t = \tilde{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle \]
end for
for all \(m \) in \([M]\) do:
\[\text{draw i with probability } \propto w_t^{[i]} \]
\[\text{add } x_t^{[i]} \text{ to } X_t \]
end for
return \(X_t \)

def runFilter:
while True:
 sampleMotionModel(p)
 reading = vehicle_read_sensor()
 updateWeight(p, reading)
 p = resampleParticle(p)
Sample Motion Model

- Imagine particles as multiple robots that have the same motion model as the actual robot
- Control: Linear and Angular Velocity
- State: Position and Heading
- From control to state: Integration

\[
\begin{align*}
\dot{x} &= v \cos(\theta) \\
\dot{y} &= v \sin(\theta) \\
\dot{\theta} &= \delta
\end{align*}
\]
Integration

- Basic Idea: \(y += dy \times \Delta t \)
 - Simple
 - Inaccurate

- SciPy ODE Integrator (scipy.integrate.ode)
 - Slightly Slower (Depends on the integrator)
 - Accurate

- How to use?
 - Set initial Value
 - Find \(f(t, y, ...(controls)) \) such that \(dy(t) = f(t, y, ...(controls)) \)
 - Use a list of control signals to update integrator and integrate with respect to \(t \)
 - Why a list: Integrator may not be fast enough to synchronize with simulator
Integration Tricks

● All the particles move the same way.
 ○ Only Initial State is Different
 ○ ODE is expensive
 ○ Could you think of a way to apply ODE result on all particles?

● ODE Accuracy v.s. Frequency Trade Off
 ○ Inaccurate/simple integrator may outperform slower/accurate integrator because it can update and converge faster
 ○ Sweet Spot: Trial and Error
Sensor Model: Lidar

- Lidar: Coupled Distance and Heading Sensor
- Interpretation: 3D Point Cloud (X, Y, Z)
- Only Want 8 Directions
 - Provided: Front/Rear/Left/Right
 - TO-DO: Front-Right/Front-Left/Rear-Right/Rear-Left
- Conversion
 - Filter Points According to Criteria
 - Find Mean of Filtered Points
Sensor Model: Particles

- How do we find out the distances in the 8 directions for particles?
 - Shooting rays and see if it hits walls in map
 - Record the distance

- Ray is defined by?
 - Initial Point (Car)
 - Orientation/Heading (?)

- Potential Problems
 - May miss if step is too large
 - Slow: Particle Position Dependent

Sensing Limit

- Lidar and many other distance sensors have max range.
- In real life, your particle sensor model should reflect the behavior of actual sensor well enough to run the particle filter.
- Sensor limit as parameter
 - Estimation Accuracy
 - Converging Speed
 - Computation cost

https://www.intelrealsense.com/optimizing-the-lidar-camera-l515-range/
Update Weight

- Basic Idea: The Closer the Better
- Compare
 - Sensor Measurement (4 or 8)
 - Sensor Model (4 or 8)
- How? Gaussian Kernel *(weight_gaussian_kernel)*
 - Tune standard deviation
 - Or you can do something different
- Important Notice: Normalize to 1
Resampling Particles

- Update Belief by Updating Distribution of Particles
- Multinomial Resampling
 - Calculate Cumulative Sum of Weights (Again, normalize to 1 in the previous step)
 - NumPy cumsum
 - Randomly generate a number and determine which range in that cumulative weight array to which the number belongs
 - NumPy searchsorted/ Bisect bisect_left
 - Which index corresponds to that range? (Think about it)
 - Repeat Until Reach Desired Number of Particles
- There are many other resampling method: check lab manual
Other things to consider...

- What should you do when particles run inside walls or out of the maze?
- Does motion model perfectly matches simulator? What about noise?
- What if my particle filter converges and suddenly loses track? How should I recover?
Demo

- Students need to show their particle filter
 - Converges within reasonable number of iterations
 - Closely tracks the position of the vehicle
 - Can extend from 4 directions to 8 directions
Questions?

- This is a much harder MP compared to MP2
- Start early