
MP3: Filtering and Localization
Eric Liang



Overview
● Demo due 4/8/2021, Report due 4/9/2021
● 3 Written Questions, 4 Implementation Questions
● Written Questions:

○ Bayes Filter
○ Particle Filter
○ MP0 Revisited

● Implementation Questions
○ Number of Particles
○ Sensor Limit
○ Environment
○ Sensor Model



Module Architecture



Particle Filter: Main Function



Sample Motion Model
● Imagine particles as multiple 

robots that have the same motion 
model as the actual robot

● Control: Linear and Angular 
Velocity

● State: Position and Heading
● From control to state: Integration



Integration
● Basic Idea: y += dy * Δt

○ Simple
○ Inaccurate

● SciPy ODE Integrator (scipy.integrate.ode)
○ Slightly Slower (Depends on the integrator)
○ Accurate

● How to use?
○ Set initial Value
○ Find f(t, y, …(controls)) such that dy(t) = f(t, y, …(controls))
○ Use a list of control signals to update integrator and integrate with respect to t
○ Why a list: Integrator may not be fast enough to synchronize with simulator



Integration Tricks

● All the particles move the same way.
○ Only Initial State is Different
○ ODE is expensive
○ Could you think of a way to apply ODE result on all particles?

● ODE Accuracy v.s. Frequency Trade Off
○ Inaccurate/simple integrator may outperform slower/accurate integrator 

because it can update and converge faster
○ Sweet Spot: Trial and Error



Sensor Model: Lidar
● Lidar: Coupled Distance and Heading 

Sensor
● Interpretation: 3D Point Cloud (X, Y, Z)
● Only Want 8 Directions

○ Provided: Front/Rear/Left/Right
○ TO-DO: 

Front-Right/Front-Left/Rear-Right/Rear-Left

● Conversion
○ Filter Points According to Criteria
○ Find Mean of Filtered Points



Sensor Model: Particles
● How do we find out the distances in 

the 8 directions for particles?
○ Shooting rays and see if it hits walls in map
○ Record the distance

● Ray is defined by?
○ Initial Point (Car)
○ Orientation/Heading (?)

● Potential Problems
○ May miss if step is too large
○ Slow: Particle Position Dependent

http://what-when-how.com/advanced-methods-in-comp
uter-graphics/collision-detection-advanced-methods-in-
computer-graphics-part-6/



Sensing Limit
● Lidar and many other distance 

sensors have max range.
● In real life, your particle sensor 

model should reflect the behavior 
of actual sensor well enough to 
run the particle filter.

● Sensor limit as parameter
○ Estimation Accuracy
○ Converging Speed
○ Computation cost

https://www.intelrealsense.com/optimizing-the-lidar-cam
era-l515-range/



Update Weight
● Basic Idea: The Closer the Better
● Compare

○ Sensor Measurement (4 or 8)
○ Sensor Model (4 or 8)

● How? Gaussian Kernel 
(weight_gaussian_kernel)
○ Tune standard deviation
○ Or you can do something different

● Important Notice: Normalize to 1



Resampling Particles
● Update Belief by Updating Distribution of Particles
● Multinomial Resampling

○ Calculate Cumulative Sum of Weights (Again, normalize to 1 in the previous step)
■ NumPy cumsum

○ Randomly generate a number and determine which range in that cumulative weight array 
to which the number belongs
■ NumPy searchsorted/ Bisect bisect_left

○ Which index corresponds to that range? (Think about it)
○ Repeat Until Reach Desired Number of Particles

● There are many other resampling method: check lab manual



Other things to consider...
● What should you do when particles run inside walls or out of the maze?
● Does motion model perfectly matches simulator? What about noise?
● What if my particle filter converges and suddenly loses track? How should 

I recover?



Demo
● Students need to show their particle filter

○ Converges within reasonable number of iterations
○ Closely tracks the position of the vehicle
○ Can extend from 4 directions to 8 directions



Questions?
● This is a much harder MP compared to MP2
● Start early


