MP2 Walkthrough

Minghao Jiang
Eric Liang
Professor Katie Driggs-Campbell
MP2 - Vehicle model and control

- Demo due 3/25/2021, report due 3/26/2021
- In this MP, there are 2 written questions and 3 implementation questions
- The written questions are related to theories of PID control which will help you understand the gains of PID controller;
- For the coding section, you will develop a waypoint following controller and use the controller to drive the GEM vehicle in racetrack in Gazebo.
Written Questions

Problem 1 (15 points). Consider the two dimensional ODE system described by:

\[
\begin{align*}
\dot{x} &= x^2 + y \\
\dot{y} &= x - y + a,
\end{align*}
\]

where \(a \) is a parameter of the model. Find all the equilibrium points of this system.

Problem 2 (20 points). Consider the 2-dimensional linear time invariant system:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix} 0 & v \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\
x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\
u_2 \end{bmatrix} = Ax + Bu,
\]

where \(v \) is a model parameter. We would like to design a state-feedback controller to make the system asymptotically stable. Let the feedback law be of the form:

\[
\begin{bmatrix} u_1 \\
u_2 \end{bmatrix} = -\begin{bmatrix} k_{11} & k_{12} \\ 0 & k_{22} \end{bmatrix} \begin{bmatrix} x_1 \\
x_2 \end{bmatrix} = -Kx.
\]

Write down the equations for the closed loop system. Suppose the gain \(k_{22} \) is set to be 0. Write down conditions on \(k_{11} \) and \(k_{12} \) or specific values that makes the closed loop system asymptotically stable. Show your work.
Waypoint Following Controller

• Same track as MP1
• Preset waypoints are provided in waypoint_list.py
• Need to implement `execute` function in controller.py
• To run the controller, type:

 `python main.py`
• Code location:

 `[mp-directory]/src/mp2/src`
• Compiling using: `catkin_make`
• Launch simulation

 `source devel/setup.bash`

 `roslaunch mp2 mp2.launch`
ROS messages

- **GazeboModelState**
 - Provide state of GEM Car: Position, Orientation, Velocity, Angular Velocity

```c
# Set Gazebo Model pose and twist
string model_name
geometry_msgs/Pose pose # model to set state (pose and twist)
geometry_msgs/Twist twist # desired pose in reference frame
string reference_frame # desired twist in reference frame
# set pose/twist relative to the frame of this entity (Body/Model)
# leave empty or "world" or "map" defaults to world-frame
```

- **AckermannDrive**
 - It’s used for setting desired speed and steering angle through actuators
 - Pass the control input(speed, steering angle) calculated by your controller

```c
float32 steering_angle # desired virtual angle (radians)
float32 steering_angle_velocity # desired rate of change (radians/s)
float32 speed # desired forward speed (m/s)
float32 acceleration # desired acceleration (m/s^2)
float32 jerk # desired jerk (m/s^3)
```

- Refer to http://docs.ros.org/ for more information
Implementing PD Controller

For the execute function, it has 2 input arguments:

- Reference State \([x_{ref}, y_{ref}, \theta_{ref}, v_{ref}]\)
- Current State \([x_B, y_B, \theta_B, v_B]\)

You need to calculate the error vector \([\delta_x, \delta_y, \delta_\theta, \delta_v]\) defined as:

\[
\begin{align*}
\delta_x &= \cos(\theta_B) \cdot (x_{ref} - x_B) + \sin(\theta_B) \cdot (y_{ref} - y_B) \\
\delta_y &= -\sin(\theta_B) \cdot (x_{ref} - x_B) + \cos(\theta_B) \cdot (y_{ref} - y_B) \\
\delta_\theta &= \theta_{ref} - \theta_B \\
\delta_v &= v_{ref} - v_B
\end{align*}
\]

With the error vector, you can calculate control input \(u = [v, \delta]\) by

\[
u = K \cdot \delta \quad \text{where} \quad K = \begin{bmatrix} k_x & 0 & 0 & k_v \\ 0 & k_y & k_\theta & 0 \end{bmatrix}\]
Demo Instruction

• Students need to show their controller:
 • is capable of driving the car for the whole loop
 • can drive the car stably on the road
 • is able to control the car following the preset waypoints and not deviating from the road
Questions?