1 Introduction

In this MP, you will apply computer vision techniques for lane detection. Similar to MP0, MP1 is also divided in 2 parts. In first part, you will answer 2 written questions related to concepts in computer vision. Then, you will implement a camera-based lane detection module. The module will take a video stream in a format that is used in autonomous systems as input, and it will produce annotated video with the lane area’s marked. We will split the video into frames, and process it as an image in ROS (Robot Operating System). You will finish the functions shown in Figure 4, one by one, to create the lane detection module.

For part 1, you will need to solve 3 written problems. For part 2, all your code should be in the file studentVision.py and line_fit.py, and you will have to write a brief report mp1_groupname.pdf. You will have to use functions from the Robot Operating System (ROS) [2] and you are encouraged to use the OpenCV library [1]. This document gives you the first steps to get started on implementing the lane detection module. You will have to take advantage of tutorials and documentations available online. Cite all resources in your report. All the regulations for academic integrity and plagiarism spelled out in the student code apply.

Learning objectives

- Edge detection using gradients
- Working with rosbags, Gazebo and Rviz
- Basic computer vision
- Working with OpenCV libraries

System requirements

- Ubuntu 16
- ROS Kinetic

2 Written Problems

Problem 1 Convolution (5 points) Prove that convolution is commutative. That is given two functions (or arrays) show that \(f * g = g * f \). You may consider the functions to be one or two dimensional. State your assumptions clearly.

Problem 2 Filtering (5 points) Write down a \(5 \times 5 \) Gaussian derivative kernel in the \(x \)-direction. Does it find vertical or horizontal edges? Is this filter separable? Explain your answer.
Problem 3 Filtering in OpenCV (5 points) Under \texttt{mp1/src} folder, you will find a script named \texttt{filter_main.py}. Implement the \texttt{filter_gaussian} and \texttt{filter_median} filter functions and test their performances on salt-and-pepper noise and Gaussian (White) noise. Which filter is better for filtering out salt-and-pepper noise? Which filter is better for filtering out Gaussian (White) noise? Attach your result images in the report and explain why you think the specific filters work better for certain noises? (You will need to do \texttt{source devel/setup.bash} at this step. Refer to later sections for more detail)

![Salt and Pepper Noise](image1.png) ![Gaussian Noise](image2.png)

Figure 1: (a) Salt and Pepper Noise (b) Gaussian(White) Noise

3 Implementation

3.1 Problem Statement

For the implementation, you are going to implement a lane detection algorithm that will be applied to 2 scenarios. In scenario 1, you are given with a video recorded on a real car moving on a highway.

![Video recorded on a real car](image3.png)

Figure 2: Video recorded on a real car, resolution 1242 × 375

In scenario 2, you will work with a GEM car model equipped with camera in Gazebo. The GEM car will be moving along a track.

For both scenarios, your task is to use your algorithm to detect the lanes in the video or camera output. Please note that there are several parameters (e.g. color channels, threshold of Sobel filter, points for perspective transform) in the 2 scenarios are different, you will need to figure them out separately.

3.2 Module Architecture

The building-block functions of a typical lane detection pipeline are shown in Figure 4 and also listed below. However, in this MP you only need to implement some of the functions. The functions marked by * are not required for you to implement, but you can experiment with them. Lane detection is a hard problem with lots of ongoing research. This could be a component to explore more deeply in your project.

**Camera calibration* Since all camera lenses will introduce some level of distortions in images, camera calibration is needed before we starting process the image.
Figure 3: GEM car and its camera view in Gazebo

Figure 4: Lane detection module overview.

Perspective transform Convert the image into *Bird’s Eye View*.

Color threshold Threshold on color channels to find lane pixels. A typical way to do this is to covert the image from RGB space to HLS space and threshold the S channel. There are also other ways to do this part.

Gradient threshold Run an edge detection on the image by applying a *Sobel filter*.

Combined binary image Combine the gradient threshold and color threshold image to get lane image. We suggest to apply a *Region of Interest* mask to get rid of irrelevant background pixels and apply morphology function to remove noise.

Lane fitting Extract the coordinates of the centers of right and left lane from binary *Bird’s Eye View* image. Fit the coordinates into two second order polynomials that represent right and left line.

4 Development Instructions

All the *python* script you will need to modify are *studentVision.py* and *line_fit.py* which are located in the following path:

```bash
cd [path-to-MP1-workspace]/src/mpl/src
```
4.1 Gradient threshold

In this section, we will implement a function which uses gradient threshold to detect interesting features (e.g. lanes) in the image. The input image comes from callback function. The output shall be a binary image that highlights the edges.

```python
def gradient_threshold(self, img, thresh_min=25, thresh_max=100):
    """Apply sobel edge detection on input image in x, y direction
    """
    return binary_output
```

First we need to convert the colored image into grey scale image. For a gray scale image, each pixel is represented by a uint8 number (0 to 255). The image gradient could emphasize the edges easily and hence segregate the objects in the image from the background.

![Original image and gradient image](image.png)

Figure 5: Image gradient. *Left:* Original image. *Right:* Gradient image.

Then we need to get the gradient on both on x axis and y axis. Recall that we can use the Sobel operator to approximate the first order derivative. The gradient is the result of a 2 dimensional convolution between Sobel operators and original image. For this part, you will find `Sobel` function in OpenCV to be useful.

\[
\nabla(f) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]
\]

\[
S_x = \begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{bmatrix}, \quad
S_y = \begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}
\]

\[
G_x = S_x \ast I, \quad G_y = S_y \ast I
\]

Finally we need to convert each pixel into unit8, then apply the threshold to get binary image. If a pixel has value between minimum and maximum threshold, we set the value of that pixel to be 1. Otherwise set it to 0. The resulting binary image will be combined with the result from color threshold function and passed to perspective transform.

4.2 Color threshold

In this section, we will implement a function which uses color threshold to detect interesting features (e.g. lanes) in the image. The input image comes from callback function. The output shall be a binary image that highlights the white and yellow color.
def color_threshold(self, img, thresh=(100, 255)):
 ""
 Convert RGB to HSL and threshold to binary image using S channel
 ""
 return binary_output

Besides gradient method, we can also utilize the information that lane markings in United States are normally white or yellow. You can just filter out pixels other than white and yellow and what’s left are likely to be on the lanes. You may use different color space(RGB, LAB, HSV, HSL, YUV...), different channels and compare the effect. Some people prefer the RGB and HSL in the lane detection. Feel free to explore other color spaces.

You need to first convert the input image from callback function into the desired color space. Then apply threshold on certain channels to filter out pixels. In the final binary image, those pixels shall be set to 1 and the rest pixels shall be set to 0.

![Figure 6: Color threshold. Left: Original image. Right: Color threshold image.](image)

4.3 Perspective transform

In this section, we will implement a function which converts the image to Bird’s eye view (looking down from the top). This will give a geometric representation of the lanes on the 2D plane and the relative position and heading of the vehicle between those lanes. This view is much more useful for controlling the vehicle, than the first-person view. In the Bird’s eye view, the distance of pixels on the image will be proportional to the actual distance, thus simplifies calculations in control modules in the future labs.

The input comes from combined binary image from color and gradient threshold. The output is the image converted to Bird’s eye view. M and Minv are transformation matrix and inverse transformation matrix. You don’t need to worry about them.

def perspective_transform(self, img, verbose=False):
 ""
 Get bird’s eye view from input image
 ""
 return warped_img, M, Minv

During the perspective transform we wish to preserves collinearity (i.e., all points lying on a line initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line segment remains
the midpoint after transformation). Such transformation is also called Affine Transformation, which requires a 3-by-3 transformation matrix.

\[
\begin{bmatrix}
u \\ v \\ 1
\end{bmatrix} = \begin{bmatrix}
a & b & c \\ d & e & f \\ 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\ y \\ 1
\end{bmatrix}
\]

(4)

To find the matrix, we need to find the location of 4 points on the original image and map the same 4 points on the Bird’s Eye View. Any 3 of those 4 points should not be on the same line. Put those 2 groups of points into cv2.getPerspectiveTransform(), the output will be the transformation matrix. Pass the matrix into cv2.warpPerspective() and we will have the warped Bird’s Eye View image.

4.4 Lane fitting

From the previous step, we get binary bird’s eye view images that separates the possible lane pixels and background. We cut the image horizontally into several layers, and try to find the lane center on each of the layers. The histogram method is used in this step. We calculate the histogram of pixels in left half and right half of that horizontal layer. The place where possible pixels are most dense will be treated as centroid of each lane. Finally fit the coordinates of those center of lanes to second order polynomial using np.polyfit() function. Enhancement can be done by taking the average of N most recent frame polynomial coefficients. If the lane fit fails, meaning the polynomials are unable to be solved, the program will print error message: unable to detect lanes.

5 Testing Lane Detection

5.1 Video using rosbag

Messages with images, sensor data, etc., in ROS [2] can be recorded in a rosbag file. This is convenient as the rosbags can be later replayed for testing and debugging the software modules we will create. Within a rosbag, the data from different sources is organized by different rostopics.

Before we do anything on rosbag, we need to start the ROS master node:

```
roscore
```
For this MP, our input images are published by the rostopic `camera/image_raw`. We can play it back using the commands `rosbag info` and `rosbag play`. We have stored 3 rosbag the src directory: 0011_sync.bag, 0056_sync.bag, and 0484_sync.bag. You can navigate to the directory by:

```bash
cd [path-to-MP1-workspace]/src/mp1/src/bags
```

First, execute the following command from the bag files directory to see the type of contents in the rosbag.

```bash
rosbag info <your bagfile>
```

You should see something like:

```yaml
path: 0011_sync.bag
version: 2.0
duration: 7.3s
start: Dec 31 1969 18:00:00.00 (0.00)
end: Dec 31 1969 18:00:07.30 (7.30)
size: 98.6 MB
messages: 74
compression: none [74/74 chunks]
types: sensor_msgs/Image [06021388200f6f0f447d0fcd9c64743]
topics: camera/image_raw 74 msgs : sensor_msgs/Image
```

This tells us topic names and types as well as the number (count) of each message topic contained in the bag file. The next step is to replay the bag file. In a terminal window run the following command in the directory where the original bag files are stored:

```bash
rosbag play -i <your bagfile>
```

When playing the rosbag, the video will be converted to individual images that are sent out at a certain frequency. We have provide a callback function. Every time a new image is published, the callback function will be triggered, convert the image from ROS message format to OpenCV format and pass the image into our pipeline.

5.2 GEM Model in Gazebo

For this MP, we also provide a simulation environment in Gazebo where a GEM car equipped with a camera is moving along a race track. Compile and source the package
To launch Gazebo, you need to execute the following command:

```
roslaunch mp1 mpl.launch
```

To drive the vehicle along the track, execute python script:

```
python main.py
```

To reset the vehicle to original position, execute python script:

```
python reset.py
```

5.3 Test results

When code is finished, just run:

```
python studentVision.py
```

Rviz is a tool that help us visualize the ROS messages of both the input and output of our module. It is included by default when you install ROS. To start it just run:

```
rviz
```

You can find a “add” button on lower left corner. Click add -> By Topic. From the list of topics, choose "/lane detection -> /annotated image -> /Image" (in Figure 8). A small window should pop out that display the right and left line have been overlaid on the original video. Repeat the procedure to display "/lane detection -> /Birdseye -> /Image". The result should be like in Figure 9.

6 Report

Each group should upload a short report (2 pages) with following questions answered

Problem 4 (15 points) What are some interesting design choices you considered and executed in creating the different functions in your lane detection modules? E.g. which color spaces do you use? how do you determine the source points and destination points for perspective transform?
Problem 5 (25 points) In order to detect the lanes in both scenarios, you will need to modify some parameters. Please list and compare all parameters you have to modify and explain why you think altering them will be helpful?

Problem 6 (25 points) Record 2 short videos of Rviz window and Gazebo to show that your code works for both scenarios. You can either use screen recording software or smart phone to record.
Problem 7 (10 points) One of the provided rosbags (0484_sync.bag) is recorded in snowfall condition. Your lane detector might encounter difficulties when trying to fit the lane in this specific case. If your lane detector works, please report what techniques you used to accomplish that. If not, try to find the possible reasons and explain them. (Note that you will not be evaluated by whether your model fits the lane in this case; instead we will evaluate on the reasoning you provide.)

Demo (10 points) Similar to MP0, you will need to demo your solution on both scenarios to the TAs before 03/04/2021.

7 Submission instructions

For the mp report, students need to take 2-3 short videos clearly prove that their code works on both scenarios (rosbag videos and simulator environment) and answer other problems. Note that, for the simulation environment, your video must show that your implementation can detect lanes when car is moving. The videos can be uploaded to a website (YouTube, Vimeo, or Google Drive with public access) and you need to include the link in the report. One member of each team will upload the report mp1_groupname.pdf to Gradescope. Also, please upload your code to some cloud storage like Google Drive, DropBox, or Box; create a sharable link and include it in your report. Please only upload the src folder in a .zip file that contains code excluding rosbags.

References
