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Administrivia 
• Get started on MP3 and your project!

• Will go over oral exam protocol on Thursday

• Upcoming guest lecture attendance is “worth” double

• Participation grades (10% of total grade):

▪ 𝑃 ≈
1

3
attendance +

1

3
guest lecture participation +

1

3
team assessment

▪ Stop by OH or make appointment to check attendance grade

▪ For guest lecture participation, you can either send in questions beforehand (via 
Google forms to be posted on discord) or ask during class

▪ For team assessment, we will post a Google form for collecting feedback on your 
teammates 
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• Vehicle Modeling
• Localization
• Detection & Recognition
• Control
• Trajectory/Path/Motion Planning
• Decision Making
• Final topic: Safety!
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From Filtering to Decision-Making

Recall: Filtering allows us to recursively 
update our belief about some state

collision

inside

outside

Door 
Open

Door 
Closed

Decision-making helps us reason 
about what actions we should take



Today’s Plan

• Introduction to decision-making

• Markov Decision Processes

• MDP Policies and Value Iteration

• Simple Example
→ Will post worked out complicated example
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Traffic Alert and Collision Avoidance System (TCAS)

Surveillance Advisory Logic Display

IF (ITF.A LT G.ZTHR)
THEN IF(ABS(ITF.VMD) LT G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR ZHIT;

ELSE IF (ITF.ADOT GE P.ZDTHR)
THEN CLEAR ZHIT
ELSE
ITF.TAUV = -ITF.A/ITF.ADOT;
IF (ITF.TAUV LT TVTHR AND
((ABS(ITF.VMD) LT G.ZTHR) OR
(ITF.TAUV LT ITF.TRTRU))
THEN SET ZHIT
ELSE CLEAR ZHIT

IF (ZHIT EQ $TRUE AND 
ABS(ITF.ZDINT) GT P.MAXZDINT
THEN CLEAR ZHIT

IF (ITF.A LT G.ZTHR)
THEN IF(ABS(ITF.VMD) LT G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR ZHIT;

ELSE IF (ITF.ADOT GE P.ZDTHR)
THEN CLEAR ZHIT
ELSE
ITF.TAUV = -ITF.A/ITF.ADOT;
IF (ITF.TAUV LT TVTHR AND
((ABS(ITF.VMD) LT G.ZTHR) OR
(ITF.TAUV LT ITF.TRTRU))
THEN SET ZHIT
ELSE CLEAR ZHIT

IF (ZHIT EQ $TRUE AND 
ABS(ITF.ZDINT) GT P.MAXZDINT
THEN CLEAR ZHIT

IF (ITF.A LT G.ZTHR)
THEN IF(ABS(ITF.VMD) LT G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR ZHIT;

ELSE IF (ITF.ADOT GE P.ZDTHR)
THEN CLEAR ZHIT
ELSE
ITF.TAUV = -ITF.A/ITF.ADOT;
IF (ITF.TAUV LT TVTHR AND
((ABS(ITF.VMD) LT G.ZTHR) OR
(ITF.TAUV LT ITF.TRTRU))
THEN SET ZHIT
ELSE CLEAR ZHIT

IF (ZHIT EQ $TRUE AND 
ABS(ITF.ZDINT) GT P.MAXZDINT
THEN CLEAR ZHIT

Sensor
Measurements

Resolution
Advisory

Slide Credit: Mykel Kochenderfer



Traffic Alert and Collision Avoidance System (TCAS) RTCA DO-185B (1799 total pages / 440 is pseudocode)

M.J. Kochenderfer



Why is it hard?

State Uncertainty Dynamic Uncertainty Multiple Objectives

Imperfect sensor 
information leads to 

uncertainty in position and 
velocity of aircraft

Variability in pilot behavior 
makes it difficult to predict 

future trajectories of aircraft

System must carefully balance 
both safety and 

operational considerations

Slide Credit: Mykel Kochenderfer



Decision-Making Methods
1. Explicit programming

▪ Ex: if/then statements
→ Heavy burden on designer

2. Supervised learning
▪ Ex: imitation learning
→ Generalizing is often a challenge

3. Optimization / optimal control
▪ Ex: MPC
→ Requires a high-fidelity model and lots of computation

4. Planning
▪ Given a stochastic model, how to algorithmically determine best policy?

5. Reinforcement Learning
▪ If model is unknown (or very complex), learn policy through experience



Heuristic Method for Lane Changing: MOBIL

▪ Safety criterion:
𝑎𝐸 ≥ −𝑏𝑠𝑎𝑓𝑒

▪ Decision rule:
𝑎𝐸 − 𝑎𝐸 + 𝑝 𝑎1 − 𝑎1 + 𝑎2 − 𝑎2 > Δ𝑎𝑡ℎ

▪ Politeness factor, 𝑝: 0.35

▪ Safe braking limit, 𝑏𝑠𝑎𝑓𝑒: 2 Τ𝑚 𝑠2

▪ Acceleration threshold: 0.1 Τ𝑚 𝑠2

▪ Look-ahead horizon: 30𝑚



Decision-Making Methods
1. Explicit programming

▪ Ex: if/then statements
→ Heavy burden on designer

2. Supervised learning
▪ Ex: imitation learning
→ Generalizing is often a challenge

3. Optimization / optimal control
▪ Ex: MPC
→ Requires a high-fidelity model and lots of computation

4. Planning
▪ Given a stochastic model, how to algorithmically determine best policy?

5. Reinforcement Learning
▪ If model is unknown (or very complex), learn policy through experience



Today’s Plan

• Introduction to decision-making

• Markov Decision Processes

• MDP Policies and Value Iteration

• Simple Example



Markov Decision Processes (MDPs)



Uncertainty in Motion

• Markov Decision Processes (MDPs) model the AV and environment 
assuming full observability
▪ 𝑃(𝑧|𝑥) : deterministic and bijective

▪ 𝑃(𝑥’|𝑥, 𝑢) : may be nondeterministic

▪ Must incorporate uncertainty into the planner and generate actions for each state

• A policy for action selection is defined for all states



Markov Models

Markov Decision Processes (MDP) Partially Observable MDP Reinforcement Learning
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Markov Assumptions and Common Violations
Markov Assumption postulates that past and future data are independent if 
you know the current state.  

What are some common violations?

• Unmodeled dynamics in the environment not included in state
▪ E.g., moving people and their effects on sensor measurements in localization

• Inaccuracies in the probabilistic model
▪ E.g., error in the map of a localizing agent or incorrect model dynamics

• Approximation errors when using approximate representations
▪ E.g., discretization errors from grids, Gaussian assumptions

• Variables in control scheme that influence multiple controls
▪ E.g., the goal or target location will influence an entire sequence of control commands

Probabilistic Robotics, Section 2.4.4



Grid World Example
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Defining Values
• Actions are driven by goals

▪ E.g., reach destination, stay in lane

• Often, we want to reach goal while optimizing some cost
▪ E.g., minimize time / energy consumption, obstacle avoidance

• We express both costs and goals in a single function, called the 
payoff function



Traffic Alert and Collision Avoidance System (TCAS)

Surveillance Advisory Logic Display

IF (ITF.A LT G.ZTHR)
THEN IF(ABS(ITF.VMD) LT G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR ZHIT;
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Slide Credit: Mykel Kochenderfer



ACAS X: Simplified MDP

Own aircraft
ACAS X

Intruder Aircraft

Slide Credit: Mykel Kochenderfer

State space Action space

• Relative altitude
• Own vertical rate
• Intruder vertical rate
• Time to lateral NMAC
• State of advisory

• Clear of conflict
• Climb > 1500 ft/min
• Climb > 2500 ft/min
• Descend > 1500 ft/min
• Descend > 2500 ft/min

Dynamic model Reward model

• Head-on, constant closure
• Random vertical acceleration
• Pilot response delay (5 s)
• Pilot response strength (1/4 g)
• State of advisory

• NMAC (-1)
• Alert (-0.01)
• Reversal (-0.01)
• Strengthen (-0.009)
• Clear of conflict (0.0001)



State space Action space

• Relative altitude
• Own vertical rate
• Intruder vertical rate
• Time to lateral NMAC
• State of advisory

• Clear of conflict
• Climb > 1500 ft/min
• Climb > 2500 ft/min
• Descend > 1500 ft/min
• Descend > 2500 ft/min

Dynamic model Reward model

• Head-on, constant closure
• Random vertical acceleration
• Pilot response delay (5 s)
• Pilot response strength (1/4 g)
• State of advisory

• NMAC (-1)
• Alert (-0.01)
• Reversal (-0.01)
• Strengthen (-0.009)
• Clear of conflict (0.0001)

500 feet

100 feet

Near Mid-Air Collision (NMAC)

Slide Credit: Mykel Kochenderfer

ACAS X: Simplified MDP



Optimized Logic
Both Own and Intruder Level
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Metric TCAS ACAS X

NMACs 169 3

Alerts 994,317 690,406

Strengthens 40,470 92,946

Reversals 197,315 9,569

Slide Credit: Mykel Kochenderfer



Today’s Plan

• Introduction to decision-making

• Markov Decision Processes

• MDP Policies and Value Iteration

• Simple Example



Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the 
future payoff in expectation

• Policy: 𝜋 ∶ 𝑥𝑡 → 𝑢𝑡
▪ Maps states to actions

▪ Can be low-level reactive algorithm or a long-term, high-level planner

▪ May or may not be deterministic

• Typically, we want a policy that optimizes future payoff, considering 
optimal actions over a planning (time) horizon



Open vs. Closed Loop Planning

• Closed-Loop Planning: accounts for future information in planning.  
This creates a reactive plan (policy) that can react to different 
outcomes over time

• Open-Loop Planning: path panning algorithms develop a static 
sequence of actions



Open Loop vs. Closed Loop Planning
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MDP Policies
• Policies map states to actions

𝜋: 𝑥 → 𝑢

• We want to find a policy that maximizes future pay off

▪ Suppose 𝑇 = 1: 𝜋1 𝑥 = argmax𝑢 𝑟 𝑥, 𝑢

• We write the Value Function for given 𝜋:

𝑉1 𝑥 = 𝛾 max
𝑢

𝑟(𝑥, 𝑢)

• Generally, we want to find the sequence of actions that optimize the 
expected cumulative discounted future payoff 



Expected Cumulative Payoff

𝑅𝑇 = 𝔼 

𝜏=0

𝑇

𝛾𝜏 𝑟𝑡+𝜏

1. Greedy case: 𝑇 = 1
→ Optimize next payoff

2. Finite Horizon: 1 ≤ 𝑇 < ∞, 𝛾 ≤ 1
→ Optimize 𝑅𝑇 for set time window

3. Infinite Horizon: 𝑇 = ∞, 𝛾 < 1
→ Optimize 𝑅∞ for all time

If 𝑟 ≤ 𝑟𝑚𝑎𝑥, discounting guarantees 𝑅∞ is finite

𝑅∞ ≤ 𝑟𝑚𝑎𝑥 + 𝛾𝑟𝑚𝑎𝑥 + 𝛾2𝑟𝑚𝑎𝑥 +⋯ =
𝑟𝑚𝑎𝑥

1 − 𝛾



Value Functions
For longer time horizons, we define V(x) recursively:

Recall: 𝑉1 𝑥 = 𝛾max
𝑢

𝑟 𝑥, 𝑢



Value Functions

• In the infinite time horizon, we tend to reach equilibrium:

𝑉∞ 𝑥 = 𝛾max
𝑢

𝑟 𝑥, 𝑢 + ∫ 𝑉∞ 𝑥′ 𝑝 𝑥′|𝑥, 𝑢 𝑑𝑥′

• This is the Bellman Equation
▪ Satisfying this is necessary and sufficient for an optimal policy



Computing the (Approximate) Value Function
• Initial guess for 𝑉

▪ 𝑉 𝑥 ← 𝑟𝑚𝑖𝑛, ∀𝑥

• Successively update for increasing horizons
▪ 𝑉 𝑥 ← 𝛾 max

𝑢
𝑟 𝑥, 𝑢 + ∫ 𝑉 𝑥′ 𝑝 𝑥′|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1

• Given estimate 𝑉(𝑥), policy is found:
▪ 𝜋 𝑥 = argmax𝑢 𝑟 𝑥, 𝑢 + ∫ 𝑉 𝑥′ 𝑝 𝑥′|𝑥, 𝑢 𝑑𝑥′

• Often, we use the discrete version:
▪ 𝜋 𝑥 = argmax𝑢 𝑟 𝑥, 𝑢 + σ𝑥

′ 𝑉 𝑥′ 𝑝 𝑥′|𝑥, 𝑢
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• Introduction to decision-making
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Example: Create an MDP



Example: Value Iteration



Grid world example
• States: cells in 10 × 10 grid

• Actions: up, down, left, right

• Transition model: 0.7 
chance of moving in 
intended direction, uniform 
in other directions

• Reward: 
▪ two states with cost

▪ two terminal states with 
rewards

▪ −1 for wall crash

• Discount is 0.9























Converged!



𝛾 = 0.9 𝛾 = 0.5



Summary
• Discussed decision-making (planning) schemes and how they fit into the 

AV stack

• Defined the MDP model for decision-making, including goals, costs, 
payoff, and policies

• Defined Expected Cumulative Payoff, which plays a key role in 
optimizing actions over planning horizons

• Used value iteration to determine the “value” of a particular state, which 
helps us determine the best action to take considering future payoff

• We generally assumed the transition and reward function are known 
exactly – but what if we don’t have access to this information?
▪ Will post notes on basic Q-learning for RL!



Extra Slides



Models of Optimal Behavior

• In the finite-horizon model, the agent should optimize expected reward for 
the next H steps: 𝐸 σ𝑡=0

𝐻 𝑟𝑡
▪ Continuously executing H-step optimal actions is known as receding horizon control

• In the infinite-horizon discounted model, agent should optimize:  
𝐸 σ𝑡=0

𝐻 𝛾𝑡𝑟𝑡
▪ Discount factor is between 0 and 1, can be thought of as interest rate (reward now is 

worth more than reward later)

▪ Keeps the utility of an infinite sequence finite



Challenges

• Value iteration and Policy iteration are both standard, and no 
agreement on which is better in theory

• In practice, value iteration is preferred over policy iteration as the 
latter requires solving linear equations, which scales ~cubically with 
the size of the state space

• Real-world applications face challenges:
1. Curse of modeling: Where does the (probabilistic) environment model 

come from?

2. Curse of dimensionality: Even if you have a model, computing and storing 
expectations over large state-spaces is impractical



Mods to Dynamic Programming
Structured Dynamic Programming

• R(s, a) and U(s) can also be represented using a decision tree

• Structured value iteration and structured policy iteration performs updates on leaves of 
the decision trees instead of all the states

• Structured dynamic programming algorithms improve efficiency by aggregating states, 
and additive decomposition of reward and value functions

Approximate Dynamic Programming

• For large or continuous spaces, ADP is concerned with finding approx. optimal policies

• This is an active area of research that is conceptually similar to reinforcement learning

• Some approximation methods are:
▪ Local approximation relies on the idea that close states have similar values (builds on kNN)

▪ Global approximation uses a fixed set of parameters to approximate the value function over the 
entire state space, generally based on linear regression



Online Methods

• Online methods compute optimal action from current state
• Expand tree up to some horizon

• States reachable from the current state is typically small compared to full state space

• Heuristics and branch-and-bound techniques allow search space to be pruned

• Monte Carlo methods provide approximate solutions



Forward Search

Provides optimal action from current state s up to depth d



MDP Policy Summary

• MDPs represent sequential decision making problems using a 
transition and reward function

• Optimal policies can be found using dynamic programming

• Problems with large or continuous state spaces can be solved 
approximately using function approximation

• We generally assumed the transition and reward function are known 
exactly. On Wednesday, we’ll relax this assumption.



Partially Observable MDPs



POMDP Executions

function POMDPPolicyExecution(𝜋)

𝑏 ← initial belief state

loop

Execute action 𝑎 = 𝜋 𝑏

Observe o and reward r

𝑏 ← UpdateBelief(𝑏, 𝑎, 𝑜)



Alpha vectors



alpha vector example
Imagine we have an exam tomorrow, but there is a non-negligible chance I forget 
about the exam. You can choose to either study or take the evening off.
• If you study and there is an exam, you ace it (R=100)
• If you study and there is no exam, you get nothing (R=0)
• If you relax and there is an exam, you fail and are stressed (R=-100)
• If you relax and there is no exam, you are very happy (R=100)



alpha vector example



Why are POMDPs hard to solve?

• Combinatorial explosions!
▪ H-step conditional plans: (|O|^h-1)/(|O|-1), so the number of policies is 

A^ (|O|^h-1)/(|O|-1)

▪ For a two action two observation problem, there are 2^63 six step 
conditional plans

• Instead of solving exactly, we can approximate value iteration 
and/or solve offline

• There are many great solvers available


