Lecture 13: Planning

Professor Katie Driggs-Campbell
March 16, 2021

ECE484: Principles of Safe Autonomy
Administrivia

- Bayes Thm / Filter examples posted
- Milestone Report due Friday
• Vehicle Modeling
• Localization
• Detection & Recognition
• Control
• Simple Safety
• Next up: Planning!
Today’s Plan

• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path
 ▪ Uninformed (uniform) search
 ▪ Greedy search
 ▪ A search
Today’s Plan

• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path
 ▪ Uninformed (uniform) search
 ▪ Greedy search
 ▪ A search
Overview of Motion Planning

- **Motion planning** is the problem of finding a robot motion from start state to a goal state that avoids obstacles in the environment.
- Recall the **configuration space or C-space**: every point in the C-space $\mathcal{C} \subset \mathbb{R}^n$ corresponds to a unique configuration q of the robot.
 - E.g., configuration of a simple car is $q = (x, y, v, \theta)$
- The **free C-space** $\mathcal{C}_{\text{free}}$ consists of the configurations where the robot neither collides with obstacles nor violates constraints.
Motion Planning

Given an initial state $x(0) = x_{\text{start}}$ and a desired final state x_{goal}, find a time T and a set of controls $u: [0, T] \rightarrow \mathcal{U}$ such that the motion satisfies $x(T) = x_{\text{goal}}$ and $q(x(t)) \in C_{\text{free}}$ for all $t \in [0, T]$

Assumptions:

1. A feedback controller can ensure that the planned motion is followed closely
2. An accurate model of the robot and environment will evaluate C_{free} during motion planning
Types of Motion Planning Problems

• Path planning versus motion planning
• Control inputs: $m = n$ versus $m < n$
 - Holonomic versus nonholonomic
• Online versus offline
 - How reactive does your planner need to be?
• Optimal versus satisficing
 - Minimum cost or just reach goal?
• Exact versus approximate
 - What is sufficiently close to goal?
• With or without obstacles
 - How challenging is the problem?
Motion Planning Methods

- **Complete methods**: exact representations of the geometry of the problem and space
- **Grid methods**: discretize C_{free} and search the grid from q_{start} to goal
- **Sampling Methods**: randomly sample from the C-space, evaluate if the sample is in X_{free}, and add new sample to previous samples
- **Virtual potential fields**: create forces on the robot that pull it toward goal and away from obstacles
- **Nonlinear optimization**: minimize some cost subject to constraints on the controls, obstacles, and goal
- **Smoothing**: given some guess or motion planning output, improve the smoothness while avoiding collisions
Properties of Motion Planners

• **Multiple-query versus single-query planning**
• **“Anytime” planning**
 ▪ Continues to look for better solutions after first solution is found
• **Computational complexity**
 ▪ Characterization of the amount of time a planner takes to run or the amount of memory it requires
• **Completeness**
 ▪ A planner is **complete** if it is guaranteed to find a solution in finite time if one exists, and report failure if no feasible plan exists
 ▪ A planner is **resolution complete** if it is guaranteed to find a solution, if one exists, at the resolution of a discretized representation
 ▪ A planner is **probabilistically complete** if the probability of finding a solution, if one exists, tends to 1 as planning time goes to infinity
Search Performance Metrics

- **Soundness**: when a solution is returned, is it guaranteed to be a correct path?
- **Completeness**: is the algorithm guaranteed to find a solution when there is one?
- **Optimality**: How close is the found solution to the best solution?
- **Space complexity**: How much memory is needed?
- **Time complexity**: What is the running time? Can it be used for online planning?
Typical planning and control modules

• Global navigation and planner
 - Find paths from source to destination with static obstacles
 - Algorithms: Graph search, Dijkstra, Sampling-based planning
 - Time scale: Minutes
 - Look ahead: Destination
 - Output: reference center line, semantic commands

• Local planner
 - Dynamically feasible trajectory generation
 - Dynamic planning w.r.t. obstacles
 - Time scales: 10 Hz
 - Look ahead: Seconds
 - Output: Waypoints, high-level actions, directions / velocities

• Controller
 - Waypoint follower using steering, throttle
 - Algorithms: PID control, MPC, Lyapunov-based controller
 - Lateral/longitudinal control
 - Time scale: 100 Hz
 - Look ahead: current state
 - Output: low-level control actions
Break-out Room Discussion

• What are some use cases, considerations, and requirements for different planning modules?
 ▪ Ex: navigation, trajectory or motion planning, behavior planning
Today’s Plan

• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path
 ▪ Uninformed (uniform) search
 ▪ Greedy search
 ▪ A search
Planning as a Search Problem

This is a 2D discretization, but we can generalize to higher dimensions (e.g., position, heading, mode)
Graphs and Trees

A graph is a collection of nodes \(\mathcal{N} \) and edges \(\mathcal{E} \), where edge \(e \) connects two nodes.

A tree is a directed graph with no cycles and each node has at least one parent.

Rep a state

Rep as a matrix

\[A \in \mathbb{R}^{n \times n} \]

\[a_{ij} \leftarrow w_{i \rightarrow j} \]

0 if no link

Some graphs are directed

Root: no parents

Leaf: no children
Problem Statement: find shortest path

• Input: \(\langle V, E, w, x_{\text{start}}, x_{\text{goal}} \rangle \)
 - \(V \): (finite) set of vertices
 - \(E \subseteq V \times V \): (finite) set of edges
 - \(w: E \to \mathbb{R}_{>0} \): a function that associates to each edge \(e \) to a strictly positive weight \(w(e) \) (e.g., cost, distance, time, fuel)
 - \(x_{\text{start}}, x_{\text{goal}} \in V \): start and end vertices (i.e., initial and desired configuration)

• Output: \(\langle P \rangle \)
 - \(P \) is a path starting at \(x_{\text{start}} \) and ending in \(x_{\text{goal}} \), such that its weight \(w(P) \) is minimal among all such paths
 - The weight of a path is the sum of the weights of its edges
 - The graph may be unknown, partially known, or known
Examples

18 hrs LibED / GenED ELECTIVES

CHEM 102/3
MATH 221
MATH 231

PHYS 211
PHYS 212
PHYS 241
PHYS 213
PHYS 214

MATH 226
ECE 210
ECE 220
ECE 220
ECE 385
ECE 374

12 hrs FREE ELECTIVES

ECE 110
RHET 105
ECE 120

ECE 313

1-of-6 required in CE:

ECE 340
ECE 329
ECE 486
ECE 330
ECE 310

Microelectronics/Photonics
Nanotechnology

Circuits

Electromagnetics, Optics
Remote Sensing

Control Systems
Power and Energy Systems

Bio Imaging, Acoustics
Signal Processing
Communications

Hardware Systems
Cyberphysical Systems
Foundations/Theory
Trust, Reliability, Security
Networking, Mobile/
Distributed Computing
Big Data Analytics & Systems
AI, Robotics, Cybernetics

CE Design Elective:

ECE 445
ECE 496/499

or

ECE 411

or

A5 Edgware Road (All Directions) between Crawford Place and Star Street - traffic signals works with some lane closures at times | All lanes are open. |
Example: Find the minimal path from s to g
Today’s Plan

• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path
 ▪ Uninformed (uniform) search
 ▪ Greedy search
 ▪ A search
Uniform cost search (Uninformed search)

\[Q \leftarrow \text{\{start\}} \] // maintains paths

while \(Q \neq \emptyset \):
 pick (and remove) the path \(P \) with the lowest cost \((g = w(P)) \) from \(Q \)
 if \(\text{head}(P) = x_{\text{goal}} \) then return \(P \) // Reached the goal
 for each vertex \(v \) such that \((\text{head}(P), v) \in E \), do
 add \(\langle v, P \rangle \) to \(Q \) // Add expanded paths
 Return FAILURE // nothing left to consider
Example of Uniform-Cost Search

Q:

<table>
<thead>
<tr>
<th>Path</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle s \rangle</td>
<td>0</td>
</tr>
<tr>
<td>\langle a, s \rangle</td>
<td>2</td>
</tr>
<tr>
<td>\langle b, s \rangle</td>
<td>5</td>
</tr>
<tr>
<td>\langle c, a, s \rangle</td>
<td>4</td>
</tr>
<tr>
<td>\langle d, a, s \rangle</td>
<td>6</td>
</tr>
<tr>
<td>\langle g, d, a, s \rangle</td>
<td>8</td>
</tr>
<tr>
<td>\langle g, b, s \rangle</td>
<td>10</td>
</tr>
<tr>
<td>\langle d, c, a, s \rangle</td>
<td>7</td>
</tr>
<tr>
<td>\langle g, d, c, a, s \rangle</td>
<td>9</td>
</tr>
</tbody>
</table>
Remarks on Uniform Cost Search (UCS)

• UCS is an extension of Breadth First Search (BFS) to the weighted-graph case
 ▪ i.e., UCS is equivalent BFS if all edges have the same cost

• UCS is complete and optimal assuming costs bounded away from zero
 ▪ UCS is guided by path cost rather than path depth, so it may get in trouble if some edge costs are very small

• Worst-case time and space complexity $O(b^{W^*}/\epsilon)$, where W^* is the optimal cost, and ϵ is such that all edge weights are no smaller than
Greedy (Best-First) Search

• UCS explores paths in all directions through all neighbor nodes
• Can we bias the search to try to get “closer” to the goal?
 ▪ We need a measure of distance to the goal
 → It would be ideal to use the length of the shortest path
 → but this is exactly what we are trying to compute!

• We can estimate the distance to the goal through a heuristic function:
 \[h: V \rightarrow \mathbb{R}_{\geq 0} \]
 ▪ \(h(v) \) is the estimate of the distance from \(v \) to goal
 ▪ Ex: the Euclidean distance to the goal (as the crow flies)
• A reasonable strategy is to always try to move in such a way to minimize the estimated distance to the goal
Greedy Search

\[Q \leftarrow \langle \text{start} \rangle \quad \text{// initialize queue with start} \]
while \(Q \neq \emptyset \):

\[\begin{align*}
pick \ (\text{and remove}) \ the \ path \ P \ with \ the \ lowest \ \textit{heuristic cost} \ h(\text{head}(P)) \ from \ Q \\
\text{if} \ h(\text{head}(P)) = x_{\text{goal}} \ \text{then return} \ P \\
\text{for each vertex} \ v \ \text{such that} \ (\text{head}(P), v) \ \in \ E, \ \text{do} \\
\quad \text{add} \ \langle v, P \rangle \ \text{to} \ Q \\
\text{Return FAILURE} \\
\end{align*} \]

// Reached the goal
// for all neighbors
// Add expanded paths
// nothing left to consider
Example of Greedy Search

Q:

<table>
<thead>
<tr>
<th>Path</th>
<th>Cost</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨s⟩</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>⟨a, s⟩</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>⟨b, s⟩</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>⟨c, a, s⟩</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>⟨d, a, s⟩</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>⟨g, b, s⟩</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
Remarks on Greedy Search

• Greedy (Best-First) search is similar to Depth-First Search
 ▪ keeps exploring until it has to back up due to a dead end

• Not complete and not optimal, but is often fast and efficient, depending on the heuristic function h
Informed Search: ‘A’ Search

• UCS is optimal, but may wander around a lot before finding the goal
• Greedy is not optimal, but can be efficient, as it is heavily biased towards moving towards the goal
• A new idea:
 ▪ Keep track of both the cost of the partial path to get to a vertex $g(v)$ and the heuristic function estimating the cost to reach the goal from a vertex $h(v)$
 ▪ Choose a “ranking” function to be the sum of the two costs:
 \[f(v) = g(v) + h(v) \]
 ▪ $g(v)$: cost-to-arrive (from the start to v)
 ▪ $h(v)$: cost-to-go estimate (from v to the goal)
 ▪ $f(v)$: estimated cost of the path (from the start to v and then to the goal)
Summary

• Introduced basic concepts important for path and motion planning
 ▪ Discussed the differences between the two planning strategies and considerations for various algorithms
• Reviewed graph definitions and naïve search methods
 ▪ Uninformed and Greedy searches are okay, but not perfect
• Next time: Learn about the final search method A Search (A* and Hybrid A*)
Extra Slides
CSL Prof. LaValle central to Oculus’ $2 billion success

July 17, 2014

Nick Katzner, Engineering Communications Office

On March 25, both the business and technology news pages excitedly announced Facebook’s $2 billion acquisition of Oculus VR, the maker of a virtual reality gaming headset called Oculus Rift.
Graph Search Methods

A* search algorithm.

Dijkstra’s algorithm.

Credit: Subb83 on Wikipedia
Reachability Tree for Dubin’s Car

Two stages

Four stages

Credit: Steven LaValle, Planning Algorithms