
Lecture 12: 
Filtering & Localization continued

Professor Katie Driggs-Campbell

March 11, 2021

ECE484: Principles of Safe Autonomy



Administrivia 
• Note that you can make up missed lectures by watching the videos 

and meeting with me to discuss the material in OH



Today’s Plan

• What is filtering, mapping, and localization?
▪ Probability review!

• Bayes Filters (discrete)

• Kalman Filters (continuous)

• Particle Filters



Bayes Filter Reminder
𝑏𝑒𝑙 𝑥𝑡 = 𝜂𝑝 𝑧𝑡 𝑥𝑡 ∫ 𝑝 𝑥𝑡| 𝑢𝑡 , 𝑥𝑡−1 𝑏𝑒𝑙 𝑥𝑡−1 𝑑𝑥𝑡−1
• Prediction

𝑏𝑒𝑙 𝑥𝑡 = ∫ 𝑝 𝑥𝑡| 𝑢𝑡, 𝑥𝑡−1 𝑏𝑒𝑙 𝑥𝑡−1 𝑑𝑥𝑡−1
• Correction

𝑏𝑒𝑙 𝑥𝑡 = 𝜂𝑝 𝑧𝑡 𝑥𝑡 𝑏𝑒𝑙 𝑥𝑡

What if we have a good model of our (continuous) system dynamics 
and we assume a Gaussian model for our uncertainty?

→ Kalman Filters!



What is a Kalman Filter?
Suppose we have a system that is governed by a linear difference 
equation:

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜖𝑡
with measurement

𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡
• Tracks the estimated state of the system by the mean and variance of 

its state variables -- minimum mean-square error estimator

• Computes the Kalman gain, which is used to weight the impact of new 
measurements on the system state estimate against the predicted 
value from the process model

• Note that we no longer have discrete states or measurements!



Linear Gaussian Systems: Dynamics



Linear Gaussian Systems: Observations



Kalman Filter Algorithm

1. Algorithm Kalman_Filter(𝜇𝑡−1, Σ𝑡−1, 𝑢𝑡 , 𝑧𝑡):

2. Prediction
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡
2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡

⊤ + 𝑄𝑡

3. Correction:
1. 𝐾𝑡 = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡 തΣ𝑡𝐶𝑡
⊤ + 𝑅𝑡

−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)

3. Σ𝑡 = 𝐼 − 𝐾𝑡𝐶𝑡 തΣ𝑡

4. Return 𝜇𝑡,Σ𝑡



Prediction:
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡
2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡

⊤ + 𝑄𝑡

Correction:
1. 𝐾𝑡 = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡 തΣ𝑡𝐶𝑡
⊤ + 𝑅𝑡

−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)
3. Σ𝑡 = 𝐼 − 𝐾𝑡𝐶𝑡 തΣ𝑡

Apply control action

Get sensor measurement



Kalman Filter Example
ti

m
e 

= 
1

ti
m

e 
= 

2



Today’s Plan

• What is filtering, mapping, and localization?
▪ Probability review!

• Bayes Filters (discrete)

• Kalman Filters (continuous)

• Particle Filters





Particle Filters

• Particle filters are an implementation of recursive Bayesian filtering, 
where the posterior is represented by a set of weighted samples

• Instead of a precise probability distribution, represent belief 𝑏𝑒𝑙 𝑥𝑡
by a set of particles, where each particle tracks its own state estimate

• Random sampling used in generation of particles

• Particles are periodically re-sampled, with probability weighted by 
likelihood of last generation of particles

• Nonparametric filter – can approximate complex probability 
distributions without explicitly computing the closed form solutions



Particle Filtering Algorithm // Monte Carlo Localization

• motion model guides the motion of particles

• 𝑤𝑡
𝑚

is the importance factor or weight of 
each particle 𝑚, which is a function of the 
measurement model and belief

• Particles are resampled according to weight

• Survival of the fittest: moves/adds particles 
to part of space with higher probability



Particle Filtering Algorithm // Monte Carlo Localization
Step 1: Initialize particles uniformly distribute over space and assign 
initial weight

Step 2: Sample the motion model to propagate particles

Step 3: Read measurement model and 
assign (unnormalized) weight:

𝑤𝑡
[𝑚]

= exp
−𝑑2

2𝜎

Step 4: Calculate your position update estimate by adding the particle 
positions scaled by weight 
Note that weights must be normalized to sum to 1

Step 5: Choose which particles to 
resample in the next iteration by replacing 
less likely particles with more likely ones



ti
m

e 
= 

0
ti

m
e 

= 
1

ti
m

e 
= 

2

Particle Filter Localization - Illustration

Images By Daniel Lu - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=25252955

initialize particles

update motion

update motion

sensor update

sensor update

sensor update

resample particles

resample particles

resample particles







































Initial Distribution



After Incorporating Ten Ultrasound Scans



After Incorporating 65 Ultrasound Scans



Estimated Path



Particle Filtering Algorithm // Monte Carlo Localization
Step 1: Initialize particles uniformly distribute over space and assign 
initial weight

Step 2: Sample the motion model to propagate particles

Step 3: Read measurement model and 
assign (unnormalized) weight:

𝑤𝑡
[𝑚]

= exp
−𝑑2

2𝜎

Step 4: Calculate your position update estimate by adding the particle 
positions scaled by weight 
Note that weights must be normalized to sum to 1

Step 5: Choose which particles to resample in the next iteration by 
replacing less likely particles with more likely ones



Summary
• Kalman filters give you the optimal estimate for linear Gaussian systems

▪ Although most systems aren’t linear , this filter (and extensions) is highly efficient and 
widely used in practice 

▪ For a nice 2D example, check out: How a Kalman filter works, in pictures by Tim Babb

• Particle filters are an implementation of recursive Bayesian filtering, where the 
posterior is represented by a set of weighted samples
▪ The particles are propagated according to the motion model and are then weighted 

according to the likelihood of the observations

▪ In a re-sampling step, new particles are drawn with a probability proportional to the 
likelihood of the observation.

▪ Limitations:
o Some errors are particularly hard to deal with (e,g., the kidnapped robot problem)

o The success of your filter is highly reliant on the number of particles → PF can be very memory and 
compute intensive

http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/


Extra Slides



Who was Rudolf Kalman?

• Kálmán was one of the most influential people on control 
theory today and is most known for his co-invention of the 
Kalman filter (or Kalman-Bucy Filter)

• The filtering approach was initially met with vast skepticism, so 
much so that he was forced to do the first publication of his 
results in mechanical engineering, rather than in electrical 
engineering or systems engineering

• This worked out find as some of the first use cases was with 
NASA on the Apollo spacecraft 

• Kalman filters are inside every robot, commercial airplanes, 
uses in seismic data processing, nuclear power plant 
instrumentation, and demographic models, as well as 
applications in econometrics

Image Credit: Wikipedia



Fun facts about Monte Carlo Methods
… a question which occurred to me in 1946 as I was convalescing from an illness and playing
solitaires. The question was what are the chances that a Canfield solitaire laid out with 52
cards will come out successfully? After spending a lot of time trying to estimate them by pure
combinatorial calculations, I wondered whether a more practical method than "abstract
thinking" might not be to lay it out say one hundred times and simply observe and count the
number of successful plays. This was already possible to envisage with the beginning of the
new era of fast computers, and I immediately thought of problems of neutron diffusion and
other questions of mathematical physics, and more generally how to change processes
described by certain differential equations into an equivalent form interpretable as a
succession of random operations. Later [in 1946], I described the idea to John von Neumann,
and we began to plan actual calculations. - Stanislaw Ulam, ~1940s

Monte Carlo methods vary, but tend to follow this pattern:
1. Define a domain of possible inputs
2. Generate inputs randomly from a probability distribution over the domain
3. Perform a deterministic computation on the inputs
4. Aggregate the results

Monte Carlo methods were central to the simulations required for the
Manhattan Project, and more recently has been extended to Sequential Monte
Carlo in advanced signal processing and Bayesian inference. Also, the extension
MC Tree Search enabled AlphaGo.


