Lecture 12: Filtering & Localization continued

Professor Katie Driggs-Campbell
March 11, 2021

ECE484: Principles of Safe Autonomy
Administrivia

• Note that you can make up missed lectures by watching the videos and meeting with me to discuss the material in OH
Today’s Plan

• What is filtering, mapping, and localization?
 ▪ Probability review!
• Bayes Filters (discrete)
• Kalman Filters (continuous)
• Particle Filters
Bayes Filter Reminder

\[bel(x_t) = \eta p(z_t|x_t) \int p(x_t|u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1} \]

- **Prediction**

\[\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1} \]

- **Correction**

\[bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t) \]

What if we have a good model of our (continuous) system dynamics and we assume a Gaussian model for our uncertainty?

→ Kalman Filters!
What is a Kalman Filter?

Suppose we have a system that is governed by a linear difference equation:

\[x_t = A_t x_{t-1} + B_t u_t + \epsilon_t \]

with measurement

\[z_t = C_t x_t + \delta_t \]

- Tracks the estimated state of the system by the mean and variance of its state variables -- minimum mean-square error estimator
- Computes the **Kalman gain**, which is used to weight the impact of new measurements on the system state estimate against the predicted value from the process model
- Note that we no longer have discrete states or measurements!
Linear Gaussian Systems: Dynamics

\[x_t = A_t x_{t-1} + B_t u_t + \xi_t \]

Recall: \(\xi_t \sim N(0, Q_t) \)

\[p(x_t | u_{t-1}, x_{t-1}) \sim N(A_t x_{t-1} + B_t u_{t-1}, Q_t) \]

Prediction Step:

\[\bar{b}(x_t) = \int p(x_t | u_{t-1}, x_{t-1}) \bar{b}(x_{t-1}) dx_{t-1} \]

\[\bar{b}(x_t) = \begin{bmatrix} \bar{u}_t \\ \bar{\xi}_t \end{bmatrix} = \begin{bmatrix} A_t \\ A_t A_t + Q_t \end{bmatrix} \begin{bmatrix} x_{t-1} \\ A_t \xi_{t-1} \end{bmatrix} + \begin{bmatrix} B_t u_t \\ Q_t \end{bmatrix} \]
Linear Gaussian Systems: Observations

\[z_t = C_t x_t + \delta_t \quad \text{// } \quad p(z_t | x_t) \sim N(z_t; C_t x_t, R_t) \]

Correction Step:

\[\text{bel}(x_t) = \mathcal{Z} \cdot p(z_t | x_t) \cdot \text{bel}(x_t) \sim N(x_t; \mu_t, \Sigma_t) \]

Kalman Gain

\[\text{Kalman Gain} \]

\[\text{bel}(x_{t+1}) = \mathcal{Z} \cdot \mu_t = \mu_t + K_t (z_t - C_t \mu_t) \]

\[\Sigma_t = (I - K_t C_t) \Sigma_t \]

where \(K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + R_t)^{-1} \)
Kalman Filter Algorithm

1. Algorithm Kalman_Filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2. Prediction
 1. $\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t$
 2. $\bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + Q_t$

3. Correction:
 1. $K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + R_t)^{-1}$
 2. $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t)$
 3. $\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t$

4. Return μ_t, Σ_t
Correction:
1. \(K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + R_t)^{-1} \)
2. \(\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t) \)
3. \(\Sigma_t = (I - K_t C_t) \Sigma_t \)

Prediction:
1. \(\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t \)
2. \(\bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + Q_t \)

Apply control action

Get sensor measurement
Kalman Filter Example

Prediction

Measurement

Correction

Prediction

Measurement

Correction
Today’s Plan

• What is filtering, mapping, and localization?
 ▪ Probability review!
• Bayes Filters (discrete)
• Kalman Filters (continuous)
• Particle Filters
Particle Filters

• Particle filters are an implementation of recursive Bayesian filtering, where the posterior is represented by a set of weighted samples
• Instead of a precise probability distribution, represent belief $bel(x_t)$ by a set of particles, where each particle tracks its own state estimate
• Random sampling used in generation of particles
• Particles are periodically re-sampled, with probability weighted by likelihood of last generation of particles
• Nonparametric filter – can approximate complex probability distributions without explicitly computing the closed form solutions
Particle Filtering Algorithm // Monte Carlo Localization

\[X_t = x_t^{[1]}, x_t^{[2]}, \ldots, x_t^{[M]} \] particles

Algorithm MCL(\(X_{t-1}, u_t, z_t, m\)):
\[\bar{X}_{t-1} = X_t = \emptyset \]
for all \(m\) in [M] do:
\[\rightarrow x_t^{[m]} = \text{sample_motion_model}(u_t, x_{t-1}^{[m]}) \]
\[\rightarrow w_t^{[m]} = \text{measurement_model}(z_t, x_t^{[m]}, m) \]
\[\rightarrow \bar{X}_t = \bar{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle \]
end for
for all \(m\) in [M] do:
\[\rightarrow \text{draw i with probability } \propto w_t^{[i]} \]
add \(x_t^{[i]}\) to \(X_t\)
end for
return \(X_t\)

- motion model guides the motion of particles
- \(w_t^{[m]}\) is the importance factor or weight of each particle \(m\), which is a function of the measurement model and belief
- Particles are resampled according to weight
- **Survival of the fittest:** moves/adds particles to part of space with higher probability
Step 1: Initialize particles uniformly distribute over space and assign initial weight

Step 2: Sample the motion model to propagate particles

Step 3: Read measurement model and assign (unnormalized) weight:

\[
 w_t^{[m]} = \frac{1}{2\sigma} \exp\left(-\frac{d^2}{2\sigma^2}\right)
\]

Step 4: Calculate your position update estimate by adding the particle positions scaled by weight

Note that weights must be normalized to sum to 1

Step 5: Choose which particles to resample in the next iteration by replacing less likely particles with more likely ones
Particle Filter Localization - Illustration

initialize particles

sensor update

resample particles

update motion

sensor update

resample particles

update motion

sensor update

resample particles

Images By Daniel Lu - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25252955
Initial Distribution
After Incorporating Ten Ultrasound Scans
After Incorporating 65 Ultrasound Scans
Estimated Path
Particle Filtering Algorithm // Monte Carlo Localization

Step 1: Initialize particles uniformly distribute over space and assign initial weight

Step 2: Sample the motion model to propagate particles

Step 3: Read measurement model and assign (unnormalized) weight:

\[
 w_t^m = \exp \left(\frac{-d^2}{2\sigma} \right)
\]

Step 4: Calculate your position update estimate by adding the particle positions scaled by weight

Note that weights must be normalized to sum to 1

Step 5: Choose which particles to resample in the next iteration by replacing less likely particles with more likely ones

\[
 X_t = x_t^{[1]}, x_t^{[2]}, ..., x_t^{[M]} \text{ particles}
\]

Algorithm MCL(\(X_{t-1}, u_t, z_t, m\)):

\[
 \bar{X}_{t-1} = X_t = \emptyset
\]

for all \(m\) in \([M]\) do:

\[
 x_t^m = \text{sample_motion_model}(u_t, x_{t-1}^m)
\]

\[
 w_t^m = \text{measurement_model}(z_t, x_t^m, m)
\]

\[
 \bar{X}_t = \bar{X}_t + \langle x_t^m, w_t^m \rangle
\]

end for

for all \(m\) in \([M]\) do:

 draw \(i\) with probability \(\propto w_t^i\)

end for

add \(x_t^i\) to \(X_t\)

return \(X_t\)
Summary

• **Kalman filters** give you the optimal estimate for linear Gaussian systems
 - Although most systems aren’t linear 😊, this filter (and extensions) is highly efficient and widely used in practice
 - For a nice 2D example, check out: [How a Kalman filter works, in pictures](#) by Tim Babb

• **Particle filters** are an implementation of recursive Bayesian filtering, where the posterior is represented by a set of weighted samples
 - The particles are propagated according to the motion model and are then weighted according to the likelihood of the observations
 - In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.
 - Limitations:
 - Some errors are particularly hard to deal with (e.g., the kidnapped robot problem)
 - The success of your filter is highly reliant on the number of particles → PF can be very memory and compute intensive
Extra Slides
Who was Rudolf Kalman?

- Kálmán was one of the most influential people on control theory today and is most known for his co-invention of the Kalman filter (or Kalman-Bucy Filter)
- The filtering approach was initially met with vast skepticism, so much so that he was forced to do the first publication of his results in mechanical engineering, rather than in electrical engineering or systems engineering
 - This worked out fine as some of the first use cases was with NASA on the Apollo spacecraft
- Kalman filters are inside every robot, commercial airplanes, uses in seismic data processing, nuclear power plant instrumentation, and demographic models, as well as applications in econometrics
Fun facts about Monte Carlo Methods

... a question which occurred to me in 1946 as I was convalescing from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered whether a more practical method than "abstract thinking" might not be to lay it out say one hundred times and simply observe and count the number of successful plays. This was already possible to envisage with the beginning of the new era of fast computers, and I immediately thought of problems of neutron diffusion and other questions of mathematical physics, and more generally how to change processes described by certain differential equations into an equivalent form interpretable as a succession of random operations. Later [in 1946], I described the idea to John von Neumann, and we began to plan actual calculations. - Stanislaw Ulam, ~1940s

Monte Carlo methods vary, but tend to follow this pattern:
1. Define a domain of possible inputs
2. Generate inputs randomly from a probability distribution over the domain
3. Perform a deterministic computation on the inputs
4. Aggregate the results

Monte Carlo methods were central to the simulations required for the Manhattan Project, and more recently has been extended to Sequential Monte Carlo in advanced signal processing and Bayesian inference. Also, the extension MC Tree Search enabled AlphaGo.