Lecture 10:
Advanced Topics in Control

Professor Katie Driggs-Campbell
March 4, 2021

ECE484: Principles of Safe Autonomy




Administrivia
* Introducing half-time breaks

 Safety training information posted on discord

* MP1 due this week

* Demo due today
= Report due Friday

* Milestone report due Friday 3/19 by 5pm

= Rubric now online!




Today’s Plan

* Quick discussion of future topics in advanced control theory

* Introduction to' optimal control

* Linear Quadratic Regulation (LQR)
= Model Predictive Control (MPC)

* End-to-end learning
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Extensions from Control Theory

1. Hybrid Control

= Given discrete modes of continuous behavior, can we guarantee stability?
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= Given discrete modes of continuous behavior, can we guarantee stability?

Extensions from Control Theory

1. Hybrid Control

2. Lyapunov Stability

" The system is said to be Lyapunov stable about an equilibrium if
Ve > 036, > 0suchthat |xg]| < 6. 2>Vt =>0,|E(xy, t)| < ¢

V(x)
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e Quick discussion of future topics in advanced control theory

* Introduction to optimal control

* Linear Quadratic Regulation (LQR)
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Convex Optimization
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s Optimal Enough?

Deploying a PID Controller

Video Credit: Jonathan Hui




s Optimal Enough?

Deploying a PID Controller Model Predictive Control

Video Credit: Jonathan Hui




Model Predictive Control

future

reference

Image Credit: F. Borrelli




Environment
& Agent Models




Today’s Plan

e Quick discussion of future topics in advanced control theory

* Introduction to optimal control
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RL Approaches: Hand Specifying Rewards

OpenAl Gym Racecar Environment | WA N
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Video Credit: A. Irpan and

https://notanymike.github.io/Solving-CarRacing/



Experience vs. Demonstrations

Reinforcement Learning Demonstrations (sort of)




LfD: Framework and Design Choices

Yoy TP — * Demonstration approach
. e Choice of demonstrator (expert)
Teacher ; Policy . . .
Demonstrations Derivation ¢ DemOnStraUOn teChnlque (Oﬂ:“ne,
online, iterative)
Policy Execution | * Problem space continuity

* Dataset gathering (and
limitations)
e Correspondence (recording,
embodiment)
—  Demonstration (teleoperation,
d; ={(z},a)} €D shadowing)

i [ . . .
Z EOZr “jke 4 * Policy derivation
i=0,..k;



https://uofi.box.com/s/vhypmlj11xf0em8bl20vpam6z4ovk4ox

LfD: Framework and Design Choices

* Demonstration approach
e Choice of demonstrator (expert)

* Demonstration technique (offline,
online, iterative)

* Problem space continuity

Dataset gathering (and limitations)

e Correspondence (recording,
embodiment)

 Demonstration (teleoperation,
shadowing)

* Policy derivation



https://uofi.box.com/s/vhypmlj11xf0em8bl20vpam6z4ovk4ox

LfD: Deriving a Policy

B. Argall, et al., “A survey of robot learning from demonstration,” Robotics and Autonomous Systems, 2009.



https://uofi.box.com/s/vhypmlj11xf0em8bl20vpam6z4ovk4ox
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LfD: Deriving a Policy
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B. Argall, et al., “A survey of robot learning from demonstration,” Robotics and Autonomous Systems, 2009.



https://uofi.box.com/s/vhypmlj11xf0em8bl20vpam6z4ovk4ox
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Behavior Cloning

ALVINN: Autonomous Land Vehicle In a
Neural Network (1989)
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https://uofi.box.com/s/brjeya3baphy7qhxgtl81fzkyn608dgr

Behavior Cloning

ALVINN: Autonomous Land Vehicle In a End-to-End Deep Learning for Self-
Neural Network (1989) Driving Cars (2016)

S Hidden
Units



https://uofi.box.com/s/brjeya3baphy7qhxgtl81fzkyn608dgr
https://uofi.box.com/s/9bz420ymkvkw9a8fg475rjqd0x8n8d45

(Deep) Imitation Learning

* Given sample trajectories from an expert, try to learn the
underlying policy N




(Deep) Imitation Learning

* Given sample trajectories from an expert, try to learn the
underlying policy

* Tends to suffer from distribution shift, compounding
errors, model mismatch




NN Policy Baseline

HG-DAgger:
Interactive Imitation Learning with Human Experts
M. Kelly, C. Sidrane, K. Driggs-Campbell, M. Kochenderfer



(Deep) Imitation Learning

* Given sample trajectories from an expert, try to learn the
underlying policy

* Tends to suffer from distribution shift, compounding
errors, model mismatch

* By improving how we collect the data, we can improve the
resulting policy!




“Safe” Imitation Learning

Decision Rule
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“Safe” Imitation Learning

Decision Rule
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“Safe” Imitation Learning
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Self-Driving Demonstration

High Confidence in NN Policy Unseen scenario = Resume control

URNEVEN




Human-Gated Imitation Learning

= 4 UCEL15

x‘«: M. Kelly, C. Sidrane, K. Driggs-Campbell, and M.J. Kochenderfer. HG-DAgger: Interactive Imitation Learning with Human Experts, ICRA 2019.
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Demo Test Scenarios

Deep NN Policy: No Feasible Lane Change: No Obstacles Detected:

Weaving Lane Changes Emergency Stop Required Lane Keeping Required

\
2




DAgger

HG-DAgger:
Interactive Imitation Learning with Human Experts
M. Kelly, C. Sidrane, K. Driggs-Campbell, M. Kochenderfer



HG-DAgger
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HG-DAgger:
Interactive Imitation Learning with Human Experts
M. Kelly, C. Sidrane, K. Driggs-Campbell, M. Kochenderfer

Lane Keeping Required



HG-DAgger:
Interactive Imitation Learning with Human Experts
M. Kelly, C. Sidrane, K. Driggs-Campbell, M. Kochenderfer

No Feasible Lane Change



Summary

* Introduced a few advanced topics on model-based control
* Discussed learning and end-to-end (model-free) approaches

* Note that all of the methods discussed require some low-level
controller (i.e., PID) and some high-level input (i.e., decision-making)

* Did not discuss the safety implications of different control methods!
What do you think are the hazards and advantages of different
approaches?

* Next time: Filtering and localization!




Extra Slides




Inverse Reinforcement Learning

* Given an optimal trajectory, we want to find the cost function:
Ep o U:E - Ry s.t.UEp] < UIE]VE

* Rewrite as: U[ép] < mgin?l[f] - Suffers from trivial solutions!

* Modify to find cost function that gives minimum cost by a margin:

Ulép] < mgnu[f] —1(&,¢p), where 1(&,¢p) = {O if & = ¢p

1 otherwise

* To make this hold true for the maximum margin:

max mgnu[f] —1(¢,¢p) —U[¢p]

m&n [(u[fz)] - mfln[’U[E] — 1, ¢p)] + /1R(‘U)]

* To solve this problem, parameterize the function U = often a linear
combination of features



https://uofi.box.com/s/16g1gggzgrmr0n7w2t5av7fafipany99

DAgger:
Dataset Aggregation

Train 1,,,, from human data D
Run 1y, to get dataset D,
Obtain corrected labels

Aggregate: D « D UD

Tnov

A A

Repeat!
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Algorithm 2 VANILLADAGGER Decision Rule
1: procedure DR(o¢, 7, 8o, \)

. Anov it — T hov { Ot J
Gexp.t ¢ Texp(0t)
'J’I o \! :_..510
2 ~ Uniform(0, 1)
return aexp ¢
else

return a,oy



https://uofi.box.com/s/0ip0g6mb73pbzrl88zmn1djr66hfpyib

Safe Imitation Learning
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Methods for Determining the Decision Rule?

Algorithm 3 SAFEDAGGER®* Decision Rule § Algorithm 4 EnsembleDAgger Decision Rule

h 4

I: procedure DR (o, 7) pl ocedure E)R{ot [Galing Functimlj
(pov,t < “nov(ot) : nov,t, Tgp, , 4 Tnov ( Ut)

(I-exp,t — rlexp(Ot) : ﬂ'expt — "Il'E‘\P Uf)

. . 2

if Hanov,t - aexp,t||2 <T : T ||”ﬁ0‘v t ”exp.t”

2 g

; — T :

return a,,, ; X anm ’ i [E[]‘v’ll‘ﬂlll]]ll‘lll]
else : if 7 <7andy <y

return Qexp,t : l‘EtUl‘Il Cnov ¢
- else

return dexp ¢

)

= Novice action samples = Novice action samples NN Ensemble
Mean novice action Mean novice action
+ Expert action +Expert action

(a) Well-represented state (b) Poorly-represented state




