Lecture 10: Advanced Topics in Control

Professor Katie Driggs-Campbell March 4, 2021

ECE484: Principles of Safe Autonomy

Administrivia

- Introducing half-time breaks
- Safety training information posted on discord
- MP1 due this week
 - Demo due today
 - Report due Friday
- Milestone report due Friday 3/19 by 5pm
 - Rubric now online!

Today's Plan

- Quick discussion of future topics in advanced control theory
- Introduction to optimal control
 - Linear Quadratic Regulation (LQR)
 - Model Predictive Control (MPC)
- End-to-end learning

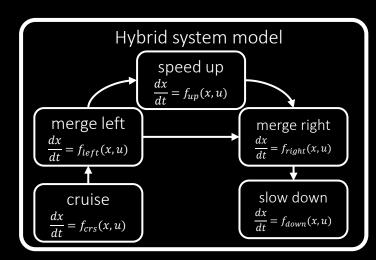
Today's Plan

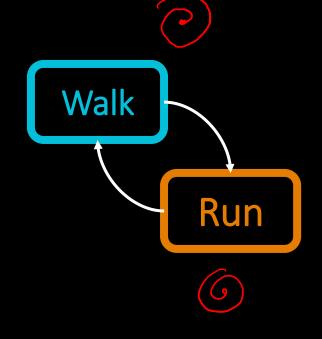
- Quick discussion of future topics in advanced control theory
- Introduction to optimal control
 - Linear Quadratic Regulation (LQR)
 - Model Predictive Control (MPC)
- End-to-end learning

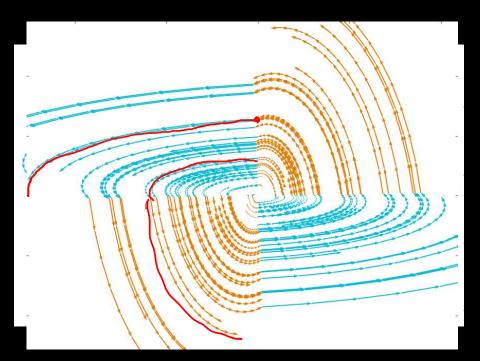
Extensions from Control Theory

1. Hybrid Control

Given discrete modes of continuous behavior, can we guarantee stability?



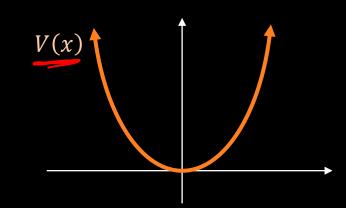




Extensions from Control Theory

1. Hybrid Control

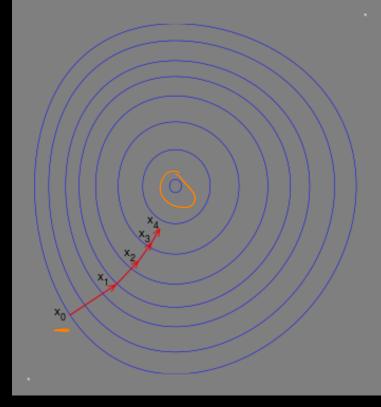
- Given discrete modes of continuous behavior, can we guarantee stability?
- 2. Lyapunov Stability
 - The system is said to be Lyapunov stable about an equilibrium if $\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0$ such that $|x_0| \leq \delta_{\varepsilon} \Rightarrow \forall t \geq 0, |\xi(x_0, t)| \leq \varepsilon$



Today's Plan

- Quick discussion of future topics in advanced control theory
- Introduction to optimal control
 - Linear Quadratic Regulation (LQR)
 - Model Predictive Control (MPC)
- End-to-end learning

Convex Optimization f(x)minimize $-g_{i}(x) \leq 0, \quad \forall i$ $-h_{i}(x) = 0, \quad \forall j$ \succ subject to if f is convex: -> every local min is a global min



Linear Quadratic Regulation (LQR) $X_{t+1} = A X_t + B U_t / x = [x_1 - x_T], u = [u_1 - u_T]^T$ goal: find input to min cost: $<math>J(x, u) = X_T Q_F X_T + \sum_t X_t Q X_t + U_t R U_t$ where Q, R, QF ERNXN -> solve w/ Least Square, $X_2 = A_{X_1} + B_{U_1} / X_3 = A_{X_2} + B_{U_2} = A(A_{X_1} + B_{U_1}) + B_{U_2}$ $= \int full + raj; X = Gu + Hx,$ $J = x^{T} \begin{bmatrix} g & 0 \\ 0 & -g \end{bmatrix} x + u^{T} \begin{bmatrix} R & -R \end{bmatrix} u$ $u = (Q^{1/2} G)^T G^{1/2} H \times @$

(100

Is Optimal Enough?

Deploying a PID Controller

Video Credit: Jonathan Hui

Is Optimal Enough?

Deploying a PID Controller

Model Predictive Control

Video Credit: Jonathan Hui

Model Predictive Control

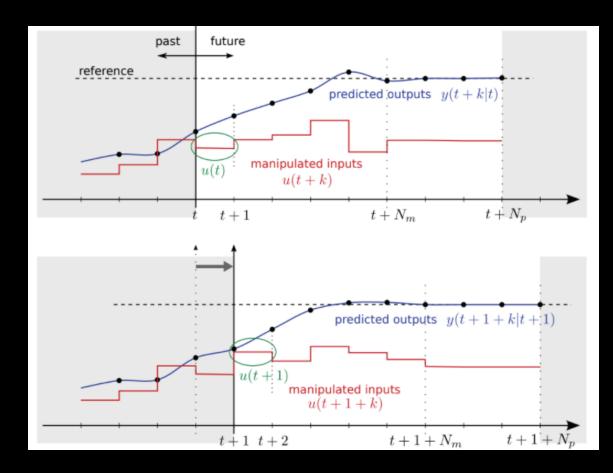
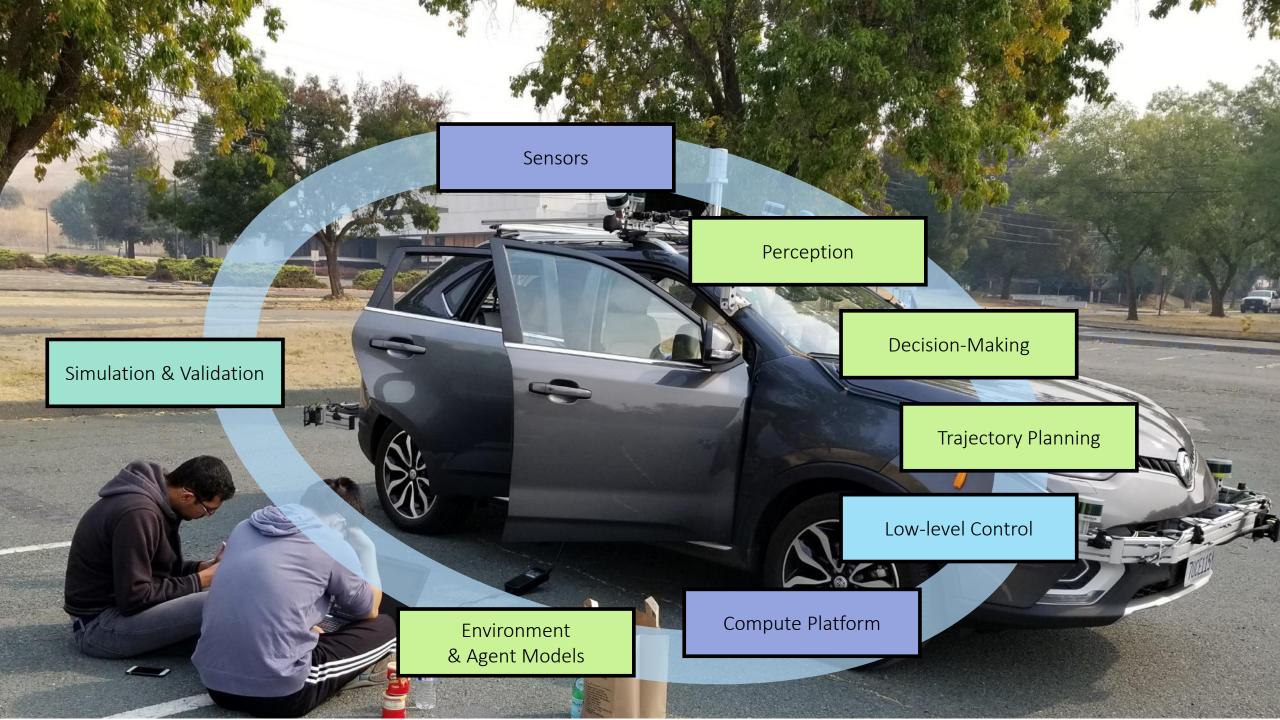


Image Credit: F. Borrelli

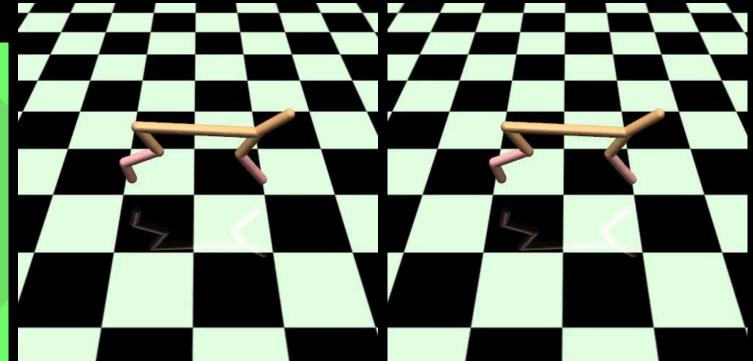


Today's Plan

- Quick discussion of future topics in advanced control theory
- Introduction to optimal control
 - Linear Quadratic Regulation (LQR)
 - Model Predictive Control (MPC)
- End-to-end learning

RL Approaches: Hand Specifying Rewards

OpenAl Gym Racecar Environment



Video Credit: A. Irpan and https://notanymike.github.io/Solving-CarRacing/

Experience vs. Demonstrations

Reinforcement Learning

Demonstrations (sort of)

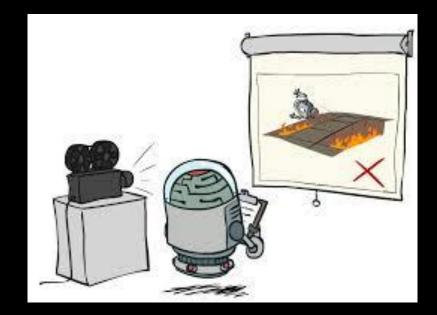
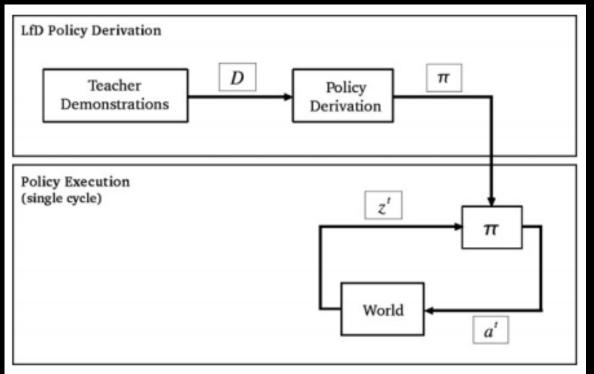


Image Credit: D. Klein, C. Amato, R. Platt

LfD: Framework and Design Choices



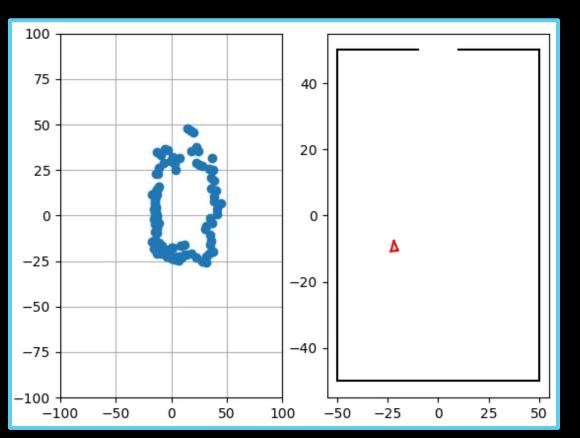
$$d_j = \{ (z_j^i, a_j^i) \} \in D$$
$$z_j^i \in Z, a_j^i \in A$$
$$i = 0, \dots, k_j$$

Demonstration approach

- Choice of demonstrator (expert)
- Demonstration technique (offline, online, iterative)
- Problem space continuity
- Dataset gathering (and limitations)
 - Correspondence (recording, embodiment)
 - Demonstration (teleoperation, shadowing)
- Policy derivation

B. Argall, et al., "A survey of robot learning from demonstration," Robotics and Autonomous Systems, 2009.

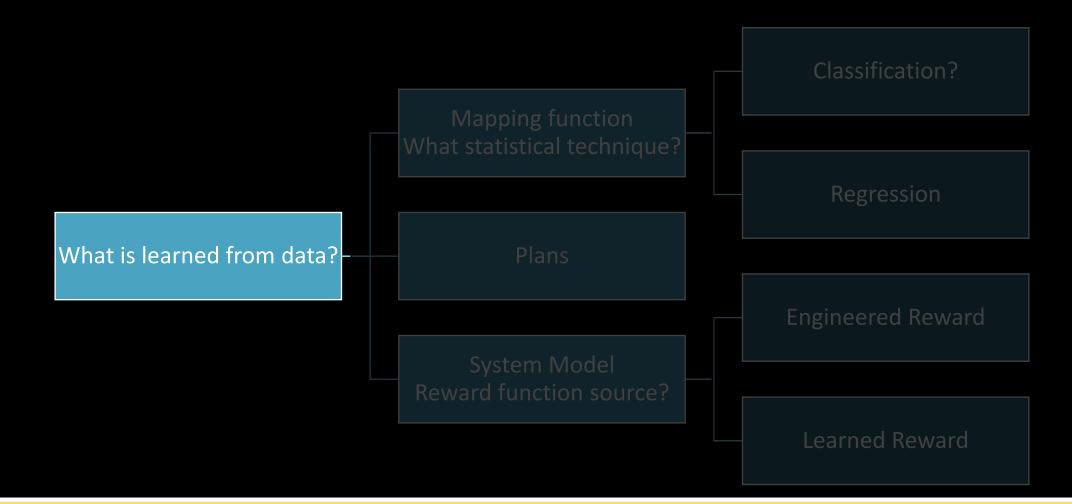
LfD: Framework and Design Choices



Demonstration approach

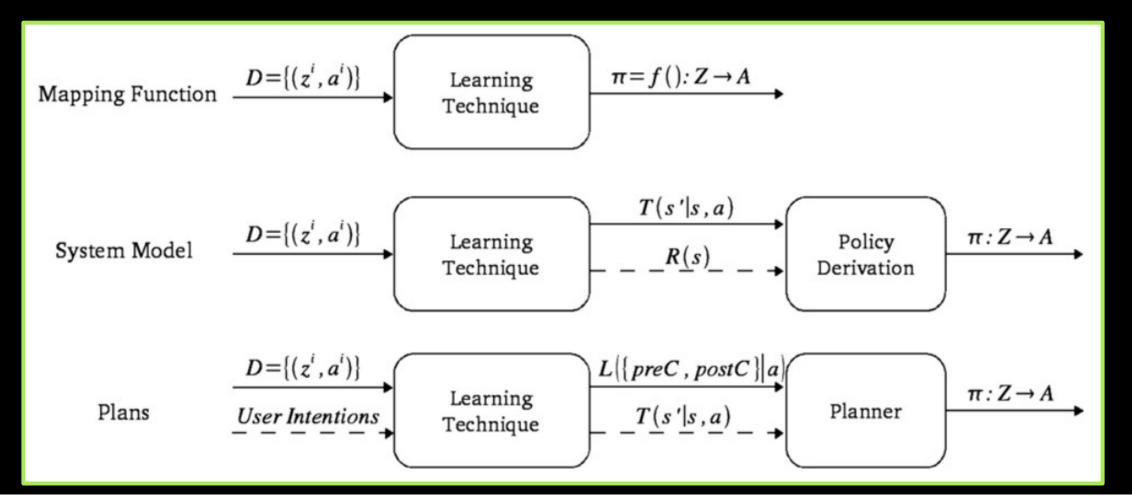
- Choice of demonstrator (expert)
- Demonstration technique (offline, online, iterative)
- Problem space continuity
- Dataset gathering (and limitations)
 - Correspondence (recording, embodiment)
 - Demonstration (teleoperation, shadowing)
- Policy derivation

LfD: Deriving a Policy

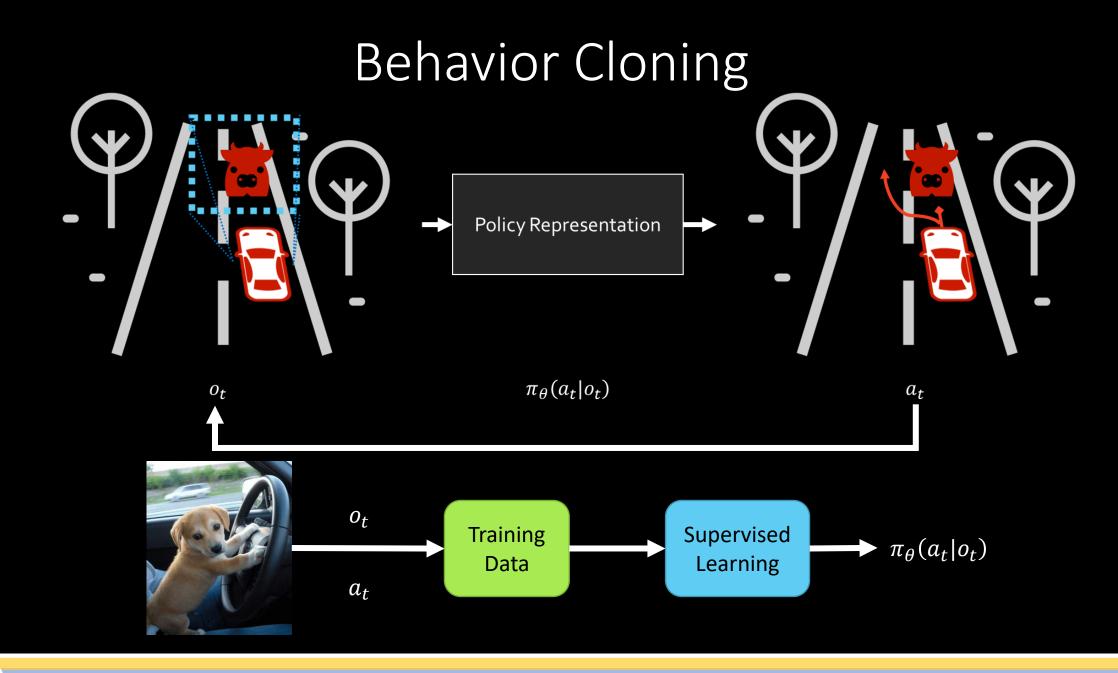


B. Argall, et al., "A survey of robot learning from demonstration," Robotics and Autonomous Systems, 2009.

LfD: Deriving a Policy



B. Argall, et al., "A survey of robot learning from demonstration," Robotics and Autonomous Systems, 2009.



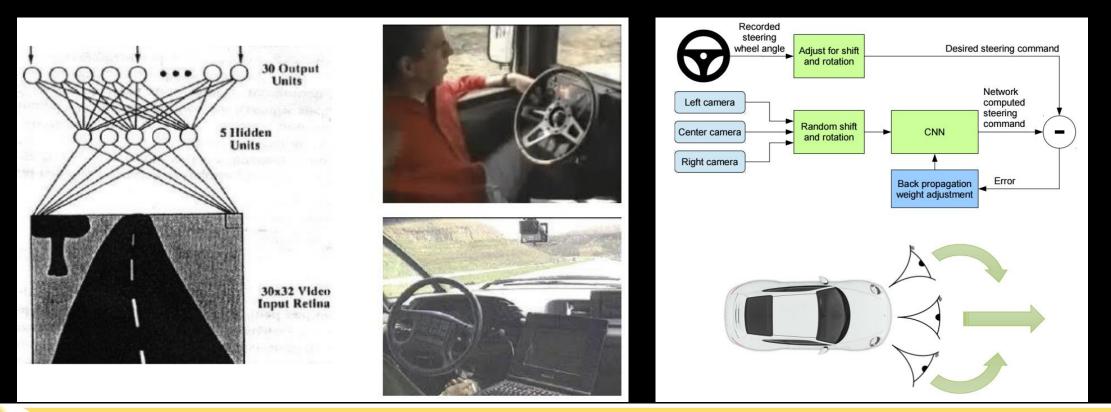
Behavior Cloning

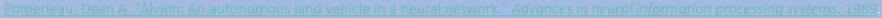
ALVINN: Autonomous Land Vehicle In a Neural Network (1989)

Behavior Cloning

ALVINN: Autonomous Land Vehicle In a Neural Network (1989)

End-to-End Deep Learning for Self-Driving Cars (2016)

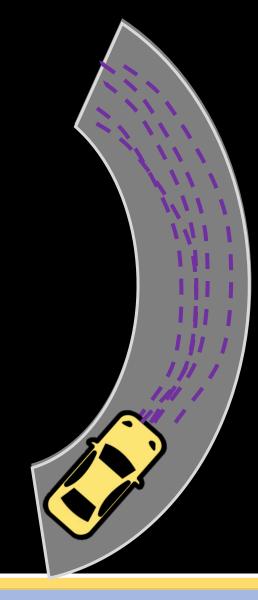




IVI. Bojarski, et al. "End to end learning for self-driving cars." arXiv:1604.07316 (2016).

(Deep) Imitation Learning

 Given sample trajectories from an expert, try to learn the underlying policy

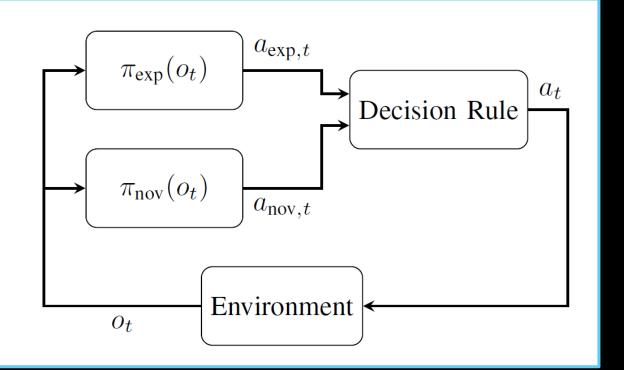


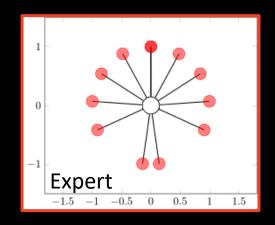
(Deep) Imitation Learning

- Given sample trajectories from an expert, try to learn the underlying policy
- Tends to suffer from distribution shift, compounding errors, model mismatch

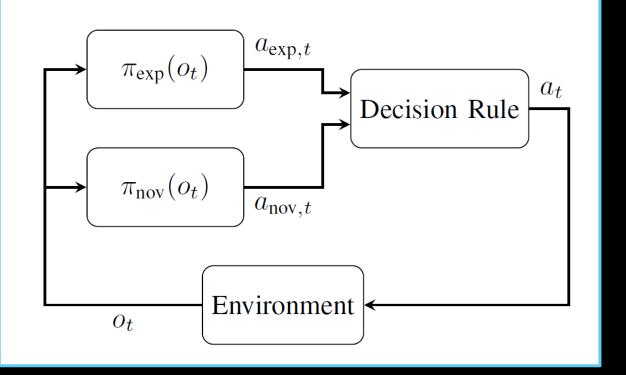
(Deep) Imitation Learning

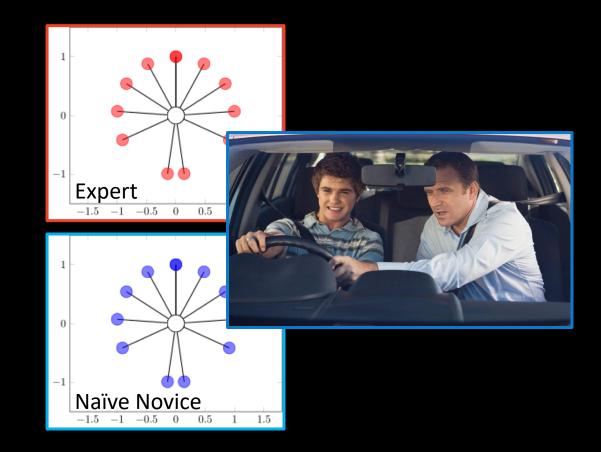
- Given sample trajectories from an expert, try to learn the underlying policy
- Tends to suffer from distribution shift, compounding errors, model mismatch
- By improving how we collect the data, we can improve the resulting policy!



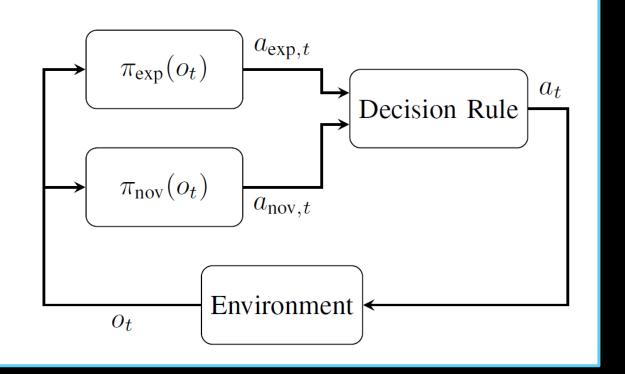


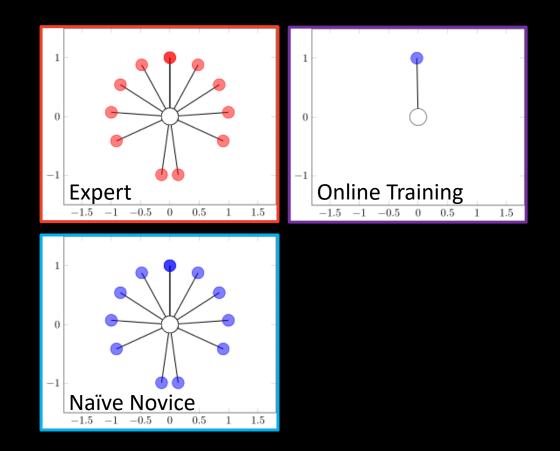
Visualization Credit: K. Menda



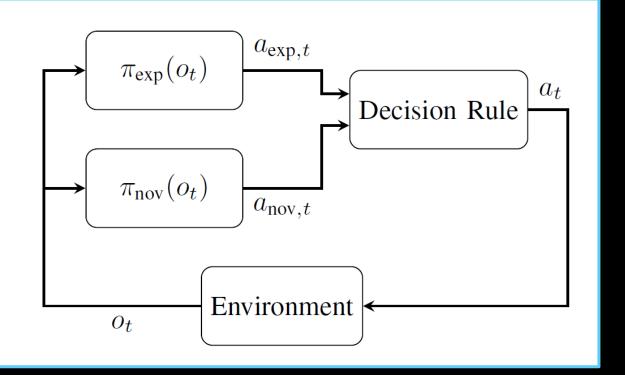


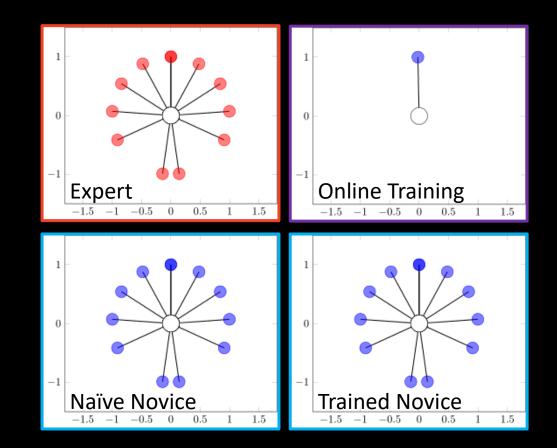
Visualization Credit: K. Mendac





Visualization Credit: K. Menda



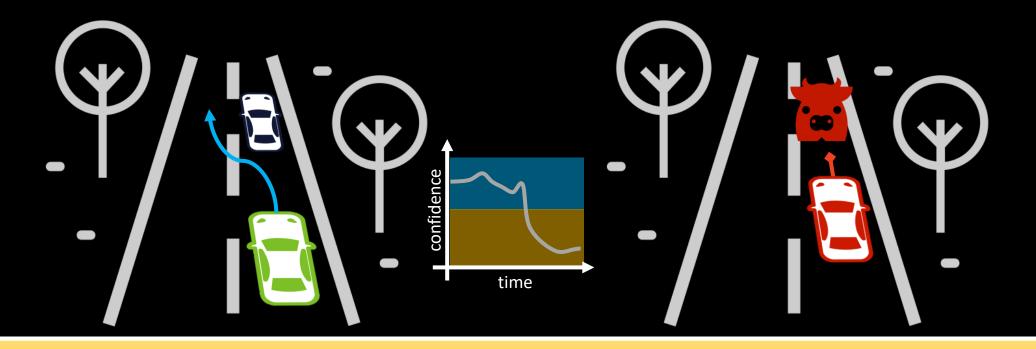


Visualization Credit: K. Menda

Self-Driving Demonstration

High Confidence in NN Policy

Unseen scenario \rightarrow Resume control



Human-Gated Imitation Learning

M. Kelly, C. Sidrane, K. Driggs-Campbell, and M.J. Kochenderfer. HG-DAgger: Interactive Imitation Learning with Human Experts, ICRA 2019.

Demo Test Scenarios

Lane Keeping Required

No Feasible Lane Change

Summary

- Introduced a few advanced topics on model-based control
- Discussed learning and end-to-end (model-free) approaches
- Note that all of the methods discussed require some low-level controller (i.e., PID) and some high-level input (i.e., decision-making)
- Did not discuss the safety implications of different control methods! What do you think are the hazards and advantages of different approaches?
- *Next time:* Filtering and localization!

Extra Slides

Inverse Reinforcement Learning

- Given an optimal trajectory, we want to find the cost function: $\xi_D \to \mathcal{U}: \Xi \to \mathbb{R}_+ \ s. t. \mathcal{U}[\xi_D] \leq \mathcal{U}[\xi], \forall \xi$
- Rewrite as: $\mathcal{U}[\xi_D] \le \min_{\xi} \mathcal{U}[\xi] \rightarrow$ Suffers from trivial solutions!
- Modify to find cost function that gives minimum cost by a margin:

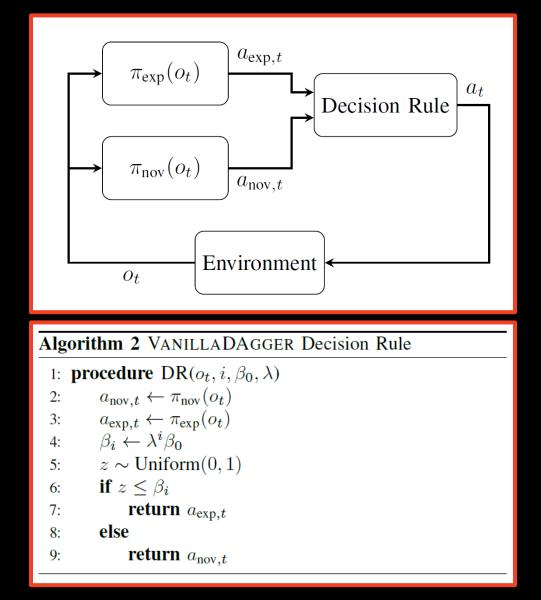
$$\mathcal{U}[\xi_D] \le \min_{\xi} \mathcal{U}[\xi] - l(\xi, \xi_D), \text{ where } l(\xi, \xi_D) = \begin{cases} 0 \text{ if } \xi = \xi_D \\ 1 \text{ otherwise} \end{cases}$$

- To make this hold true for the maximum margin: $\max_{\mathcal{U}} \min_{\xi} \mathcal{U}[\xi] - l(\xi, \xi_D) - \mathcal{U}[\xi_D]$ $\min_{\mathcal{U}} \left[\mathcal{U}[\xi_D] - \min_{\xi} [\mathcal{U}[\xi] - l(\xi, \xi_D)] + \lambda R(\mathcal{U}) \right]$
- To solve this problem, parameterize the function $\mathcal{U} \xrightarrow{}$ often a linear combination of features

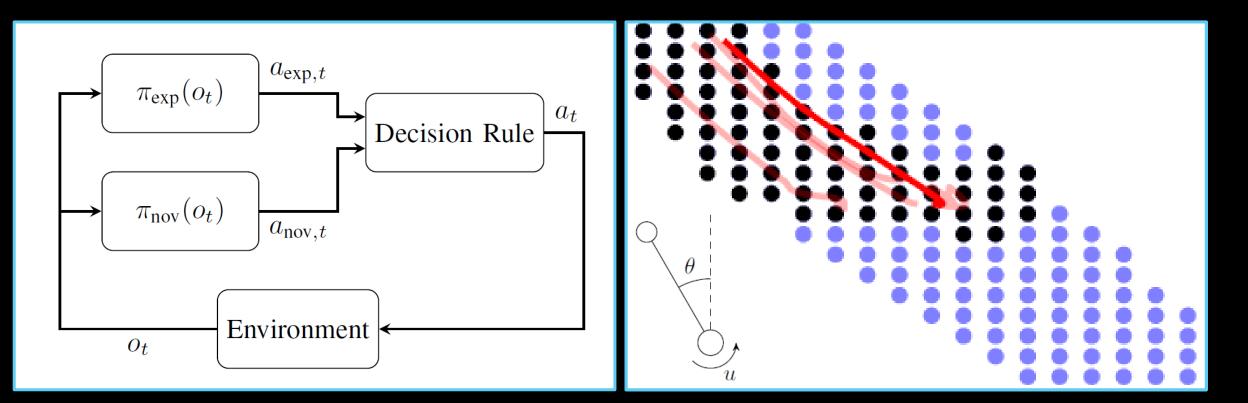
P. Abbeel and A. Ng. "Apprenticeship learning via inverse reinforcement learning." International Conference on Machine learning. 2004.

DAgger: Dataset Aggregation

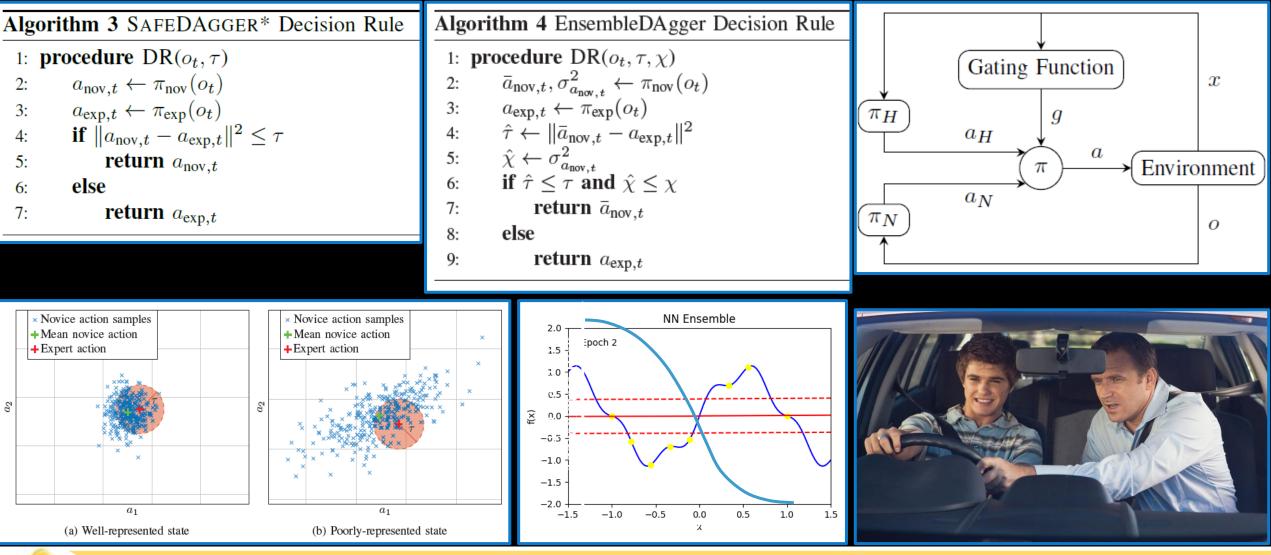
- **1**. Train π_{nov} from human data \mathcal{D}
- 2. Run π_{nov} to get dataset $\mathcal{D}_{\pi_{nov}}$
- 3. Obtain corrected labels
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi_{nov}}$
- 5. Repeat!



Dess, G. Gordon, and A. Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." International Conference on Artificial



Methods for Determining the Decision Rule?



K. Cho. "Query-efficient imitation learning for end-to-end autonomous driving." arXiv:1605.06450, 2016.