Lecture 9: PID Control

Professor Katie Driggs-Campbell
March 2, 2021

ECE484: Principles of Safe Autonomy




Administrivia

* Safety training information posted on discord

* MP1 due this week

* Demo due Thursday
= Report due Friday

* Milestone report due Friday 3/19 by 5pm
= Rubric posted tonight




Today’s Plan

* Review some properties of dynamical systems and differential equations
* Take a look at PID controllers

* Build up to waypoint following using the models discussed last week!




Typical planning and control modules

* Global navigation and planner
= Find paths from source to destination with static obstacles
= Algorithms: Graph search, Dijkstra, Sampling-based planning
= Time scale: Minutes
= Look ahead: Destination
= Qutput: reference center line, semantic commands

* Local planner
= Dynamically feasible trajectory generation
= Dynamic planning w.r.t. obstacles
= Time scales: 10 Hz
= Look ahead: Seconds
= Qutput: Waypoints, high-level actions, directions / velocities

* Controller
= Waypoint follower using steering, throttle
= Algorithms: PID control, MPC, Lyapunov-based controller
= Lateral/longitudinal control
= Time scale: 100 Hz
= Look ahead: current state
= Qutput: low-level control actions




Dynamical Systems Model

Describe behavior in terms of instantaneous laws:

d
0 = k(0 = F(x0,u)

wheret € R, x(t) € R™,u(t) € R™, and f: R™ X R™ — R" gives the
dynamics / transition function
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Control Paradigm
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PID Controllers

* Proportional u=kye

A

[\ U

\i E

7

* Integral u=k;[e(®)dr
E U

* Derivative u=kyé
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Viewing as a Second Order System

* The second order systemis: € + c;é + c,e =0
* |n standard form, we write:
e(t) + 28w,e(t) + wie(t) =0
where ¢ is the damping ratio and w,, is the natural frequency

* The eigenvalues are given as:

A2 = - T wn-

* Note that the system is stable iff w,, and ¢ are positive




Second Order Dynamics: Cases
* Overdamped: ¢ > 1

* Roots s1 and s, are distinct

« Bi(t) = c et + cyes2t

* Time constant is the less negative root
* Critically damped: ( =1

* Roots s; and s, are equal and real

* 0.(t) = (c1tcpt)e”“nt

overdamped ({ > 1) critically damped (( = 1) underdamped ({ < 1

lncreasing lm(s)
* Time constant is given by 1/w, "N overdamped overshoot,
lll"::k"-\._ critically damped cscillation
* Underdamped: ¢ < 1 N |
* Roots are complex conjugates: SRR

. 2 Ill""'j.:'l“i'.:'i“'"“]:'”;‘ shorter unstable
S12 = —Cwn *jwy/1—C¢ settling time

* He(t) = (C1COS wqt + ¢, Sin a)dt)e‘cwnt




Simple Damped Spring System

mx+bx+kx=F mx+bx+kx=u
b k " : —
sl L{mx + bx + kx}
m.om , ms?X(s) + bsX(s) + kX(s)
X+ 2§ wox + wox = u Transfer Function:
Jambing rat X(s) 1
$  dampingratio U(s) ms2+bs+k
wq natural frequency bolac:
—b +Vb?% — 4mk
S =

2m




Undamped Case: b = 0 Overdamped Case: b? — 4mk > 0

Step Response Spring Step Response Spring
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Break!




Simple vehicle model: Dubin’s car

* Key assumptions

" Front and rear wheel in the plane in a stationary
coordinate system

= Steering input, front wheel steering angle 6

= No slip: wheels move only in the direction of the
plane they reside in

» Zeroing out the accelerations perpendicular to
the plane in which the wheels reside, we can
derive simple equations

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 2016. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on Intelligent Vehicles 1 (1): 33-55.
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Dubin’s Model Qowoftin X :
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Path following control

* The path followed by a robot can be represented by a trajectory or path
parameterized by time

> from a higher-level planner

* Defines the desired instantaneous pose p(t)

7

o p(t) = [x(), y(t), 6(0)]

7
-~
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Open-loop waypoint following

* We can write an open-loop controller for a robot that is naturally
controlled via angular velocity, such as a differential-drive robot:

_[v®] _ [Vx(®)?% + y(t)?
uw,OL(t) — [(1_)_(_2) — H(t) Q]

* We can write an open-loop controller for a robot with car-like steering:

V(2 +y(1)?
weon® = ["9] = | 6w i

k@]

JE(®)?2 +y(t)2




Path following control

* The path followed by a robot can be represented by a trajectory or path
parameterized by time

— from a higher-level planner

* Defines the desired instantaneous pose p(t)

Noise Input/waypoint Disturbance
,’/ oedback Control
g eedbac
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Path following control

* Desired instantaneous pose p(t)

* How to define error between actual pose pg(t) and desired pose
p(t) in the form of y,(t) — y(t)?

p© = [x(©,5(0,00)] g

‘0

o
pp(t) = [xp(t), yp(t), 0p(t)]




Path following control

The error vector measured vehicle coordinates

e(t) = [55 (t), 511 (t), 69 (t)r 51] (t)]

|65, 0,,] define the coordinate errors in the vehicle’s reference frame:  p(t) = [x(t), y(t), 8(t), v(t)]
along track error and cross track error A

* Along track error: distance ahead or behind the target in the
instantaneous direction of motion.

§s = cos(05(8)) (x(t) — x5(2)) + sin(05(1)) (v(£) — y5(1))

* Cross track error: portion of the position error orthogonal to the
intended direction of motion

5, = —sin(HB (t)) (x(t) — Xp (t)) + COS(HB (t)) (y(t) — Vg (t)) //QVB
* Heading error: difference between desired and actual orientation and
direction pe(t) = [xp(t), y5(t), 05(t), vp(D)]
8 = 0(t) — 05(t)
6y = v(t) — vp(t)

—> Each of these errors match the form y,(t) — y(t)

o o)




A simple P-controller example

y(©) = h(x(t))

Ya(t)

* Given a simple system: y(t) = u(t) + d(t) —— =300

* Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — y4(0))
y(t) = —Kpy(t) + Kpya(t) + d ()

* Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dss

* What is the steady state output?
= Set: _pr(t) + pro + dSS =0

= Solve for ygs: y(t) = f{—q + Vo
P



A simple P-controller example

y(©) = h(x(t))

Ya(t)

* Given a simple system: y(t) = u(t) + d(t) ——— «w=y0-n0
* Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) +K(PYO +dgs <

d
* Steady state output Y, = —KSS + Vo
P

* Transient behavior: %
— —t/T — e t/T —
y(t) = y,e + yss(l e ), T =1/Kp

* To make steady state error small, we can increase Kp at the expense
of longer transients



Control Law

Control input is given by u = [a, 6]
where a is the acceleration and 6 is the steering angle

_65 —_—
577, Noise p(t) = [x(t),y(t),0(t)] Disturbance
u — K 6 l l Control l
~ 196 u(®) =[]
i 6'17 ] Feedback
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Control Law

The pure-pursuit controller produced by this
gain matrix performs a PD-control. It uses a
PD-controller to correct along-track error.

The control on curvature is also a PD-

controller for cross-track error because 60 IS
related to the derivative of 6




Summary

* Reviewed linear systems and stability of differential equations

* Looked at PID controllers as a way to regulate systems using state
feedback

* Derived a waypoint following error dynamics
—>This will be MP2! Tutorial on 3/11.

* Next time: Advanced Control Topics!
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Typical system models

4 R
------------------- &> Nonlinear hybrid dynamics
® P
R Y 3 Interaction between computation and
physics can lead to unexpected behaviors
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Hybrid Instability: Switching between two stable linear models




Yes! By switching between




