Lecture 9: PID Control

Professor Katie Driggs-Campbell March 2, 2021

ECE484: Principles of Safe Autonomy

Administrivia

- Safety training information posted on discord
- MP1 due this week
 - Demo due Thursday
 - Report due Friday
- Milestone report due Friday 3/19 by 5pm
 - Rubric posted tonight

Today's Plan

- Review some properties of dynamical systems and differential equations
- Take a look at PID controllers
- Build up to waypoint following using the models discussed last week!

Typical planning and control modules

- Global navigation and planner
 - Find paths from source to destination with static obstacles
 - Algorithms: Graph search, Dijkstra, Sampling-based planning
 - Time scale: Minutes
 - Look ahead: Destination
 - Output: reference center line, semantic commands
- Local planner
 - Dynamically feasible trajectory generation
 - Dynamic planning w.r.t. obstacles
 - Time scales: 10 Hz
 - Look ahead: Seconds
 - Output: Waypoints, high-level actions, directions / velocities
- Controller
 - Waypoint follower using steering, throttle
 - Algorithms: PID control, MPC, Lyapunov-based controller
 - Lateral/longitudinal control
 - Time scale: 100 Hz
 - Look ahead: current state
 - Output: low-level control actions

Dynamical Systems Model

Describe behavior in terms of instantaneous laws: $\frac{dx(t)}{dt} = \dot{x}(t) = f(x(t), u(t)) / (x[t+1] = f(x[t+1], u[t+1]))$ where $t \in \mathbb{R}, x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$, and $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ gives the dynamics / transition function

Error Dynamics

PID Controllers

Linear Error Dynamics and Stability recall: $\dot{x} = A_{x} \longrightarrow \chi(t) = \int_{-\infty}^{At} \chi_{o}$ $a_{p} \underbrace{e^{(p)}}_{+} + a_{p-1} \underbrace{e^{(p)}}_{+} + \cdots + a_{i} \underbrace{e^{(p)}}_{+} + a_{o} \underbrace{e^{(p)}}_{+} = \bigcirc$ sys is stable if the $\chi_1 = \mathcal{C}, \chi_2 = \mathcal{C}, \chi_3 = \mathcal{C}, \cdots$ real parts of the $\chi_{\varphi} = \frac{-a_{o}}{a_{\varphi}}\chi_{1} - \frac{cl_{1}}{c}\chi_{2} - \cdots$ eigenvalues are neg. -> unstable if 3 X0 x = Ax, $x = [x_1 - x_p]$ $S.L. \lim_{t\to\infty} ||\chi(t)|| = \infty$ 010-XI e^{dt} , where $d=a+bi \in \mathbf{C}$ L) l^{at} (cosbt tisinbt) a < 0-<u>clo</u> ap a_{t} $\alpha > O$

Viewing as a Second Order System

- The second order system is: $\ddot{e} + c_1 \dot{e} + c_2 e = 0$
- In standard form, we write:

 $\ddot{e}(t) + 2\xi\omega_n\dot{e}(t) + \omega_n^2 e(t) = 0$

where ξ is the *damping ratio* and ω_n is the *natural frequency*

• The eigenvalues are given as:

$$\lambda_{1,2} = -\xi\omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

• Note that the system is stable iff ω_n and ξ are positive

Second Order Dynamics: Cases

- Overdamped: $\zeta > 1$
 - Roots s_1 and s_2 are distinct
 - $\theta_e(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$
 - Time constant is the less negative root
- Critically damped: $\zeta = 1$
 - Roots s_1 and s_2 are equal and real
 - $\theta_e(t) = (c_1 + c_2 t)e^{-\omega_n t}$
 - Time constant is given by $1/\omega_n$
- Underdamped: $\zeta < 1$
 - Roots are complex conjugates:

 $s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$

• $\theta_e(t) = (c_1 \cos \omega_d t + c_2 \sin \omega_d t) e^{-\zeta \omega_n t}$

Simple Damped Spring System

$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = u$$

$$\ddot{x} + 2\xi\omega_0\dot{x} + \omega_0^2x = u$$

 ξ damping ratio ω_0 natural frequency

т

 $\mathcal{L}\{m\ddot{x} + b\dot{x} + kx\} =$ $ms^{2}X(s) + bsX(s) + kX(s)$ Transfer Function: $\frac{X(s)}{U(s)} = \frac{1}{ms^{2} + bs + k}$ Poles: $s = \frac{-b \pm \sqrt{b^{2} - 4mk}}{2m}$

Undamped Case: b = 0

Overdamped Case: $b^2 - 4mk > 0$

Underdamped Case: $b^2 - 4mk < 0$

0.25

With Feedback Control

Break!

Simple vehicle model: Dubin's car

- Key assumptions
 - Front and rear wheel in the plane in a stationary coordinate system
 - $\hfill\blacksquare$ Steering input, front wheel steering angle δ
 - No slip: wheels move only in the direction of the plane they reside in
- Zeroing out the accelerations perpendicular to the plane in which the wheels reside, we can derive simple equations

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 2016. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles 1 (1): 33–55.

Dubin's Model

COSO NSINO tan 8

- The path followed by a robot can be represented by a *trajectory or path* parameterized by time
 - \rightarrow from a higher-level planner
- Defines the desired instantaneous pose p(t)

Open-loop waypoint following

• We can write an open-loop controller for a robot that is naturally controlled via angular velocity, such as a differential-drive robot:

$$u_{\omega,OL}(t) = \begin{bmatrix} v(t) \\ \omega(t) \end{bmatrix} = \begin{bmatrix} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \\ \dot{\theta}(t) \end{bmatrix}$$

• We can write an open-loop controller for a robot with car-like steering:

$$u_{\kappa,OL}(t) = \begin{bmatrix} v(t) \\ \kappa(t) \end{bmatrix} = \begin{bmatrix} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \\ \dot{\theta}(t) \\ \hline \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \end{bmatrix},$$

- The path followed by a robot can be represented by a *trajectory or path* parameterized by time
 - ightarrow from a higher-level planner
- Defines the desired instantaneous pose p(t)

- Desired instantaneous pose p(t)
- How to define error between actual pose $p_B(t)$ and desired pose p(t) in the form of $y_d(t) y(t)$?

The error vector measured vehicle coordinates

 $\mathbf{e}(t) = [\delta_s(t), \delta_n(t), \delta_\theta(t), \delta_v(t)]$

 $[\delta_s, \delta_n]$ define the coordinate errors in the vehicle's reference frame: along track error and cross track error

• Along track error: distance ahead or behind the target in the instantaneous direction of motion.

 $\delta_{s} = \cos(\theta_{B}(t)) \left(x(t) - x_{B}(t) \right) + \sin(\theta_{B}(t)) \left(y(t) - y_{B}(t) \right)$

• Cross track error: portion of the position error orthogonal to the intended direction of motion

$$\delta_n = -\frac{\sin(\theta_B(t))}{x(t) - x_B(t)} + \frac{\cos(\theta_B(t))}{y(t) - y_B(t)} (y(t) - y_B(t))$$

Heading error: difference between desired and actual orientation and direction

$$\begin{split} \delta_{\theta} &= \theta(t) - \theta_B(t) - \\ \delta_v &= v(t) - v_B(t) - \end{split}$$

\rightarrow Each of these errors match the form $y_d(t) - y(t)$

 $p_B(t) = [x_B(t), y_B(t), \theta_B(t), v_B(t)]$

A simple P-controller example

- Given a simple system: $\dot{y}(t) = u(t) + d(t)$
- Using proportional (P) controller:

$$u(t) = -K_{P}e(t) = -K_{P}(y(t) - y_{d}(t))$$

$$\dot{y}(t) = -K_{P}y(t) + K_{P}y_{d}(t) + d(t)$$

• Consider constant setpoint y_0 and disturbance d_{ss}

$$\dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss}$$

• What is the steady state output?

• Set:
$$-K_P y(t) + K_P y_0 + d_{ss} = 0$$

• Solve for
$$y_{ss}$$
: $y(t) = \frac{d_{ss}}{K_P} + y_0$

A simple P-controller example

• Given a simple system: $\dot{y}(t) = u(t) + d(t)$

- u(t) u(t) (t) (t
- Consider constant setpoint y_0 and disturbance d_{ss}

$$\dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss} \ll$$

- Steady state output $y_{SS} = \frac{d_{SS}}{K_P} + y_0$
- Transient behavior:

$$y(t) = y_0 e^{-t/T} + y_{ss} (1 - e^{-t/T}), T = 1/K_P$$

 To make steady state error small, we can increase K_P at the expense of longer transients

Control Law

Control input is given by $u = [a, \delta]^T$

where a is the acceleration and δ is the steering angle

Control Law

$$K = \begin{bmatrix} K_s & 0 & 0 & K_v \\ 0 & K_n & K_\theta & 0 \end{bmatrix}$$

The pure-pursuit controller produced by this gain matrix performs a PD-control. It uses a PD-controller to correct along-track error.

The control on curvature is also a PDcontroller for **cross-track error** because δ_{θ} is related to the derivative of δ_n .

Summary

- Reviewed linear systems and stability of differential equations
- Looked at PID controllers as a way to regulate systems using state feedback
- Derived a waypoint following error dynamics
 →This will be MP2! Tutorial on 3/11.
- Next time: Advanced Control Topics!

Extra Slides

Typical system models

Nonlinear <u>hybrid</u> dynamics

Interaction between computation and physics can lead to unexpected behaviors

Hybrid Instability: Switching between two stable linear models

Yes! By switching between them the system becomes unstable

0