Lecture 9: PID Control

Professor Katie Driggs-Campbell
March 2, 2021

ECE484: Principles of Safe Autonomy
Administrivia

• Safety training information posted on discord
• MP1 due this week
 ▪ Demo due Thursday
 ▪ Report due Friday
• Milestone report due Friday 3/19 by 5pm
 ▪ Rubric posted tonight
Today’s Plan

• Review some properties of dynamical systems and differential equations
• Take a look at PID controllers
• Build up to waypoint following using the models discussed last week!
Typical planning and control modules

• Global navigation and planner
 ▪ Find paths from source to destination with static obstacles
 ▪ Algorithms: Graph search, Dijkstra, Sampling-based planning
 ▪ Time scale: Minutes
 ▪ Look ahead: Destination
 ▪ Output: reference center line, semantic commands

• Local planner
 ▪ Dynamically feasible trajectory generation
 ▪ Dynamic planning w.r.t. obstacles
 ▪ Time scales: 10 Hz
 ▪ Look ahead: Seconds
 ▪ Output: Waypoints, high-level actions, directions / velocities

• Controller
 ▪ Waypoint follower using steering, throttle
 ▪ Algorithms: PID control, MPC, Lyapunov-based controller
 ▪ Lateral/longitudinal control
 ▪ Time scale: 100 Hz
 ▪ Look ahead: current state
 ▪ Output: low-level control actions
Dynamical Systems Model

Describe behavior in terms of instantaneous laws:

\[
\frac{dx(t)}{dt} = \dot{x}(t) = f(x(t), u(t)) \quad \text{where} \quad t \in \mathbb{R}, \quad x(t) \in \mathbb{R}^n, \quad u(t) \in \mathbb{R}^m, \quad \text{and} \quad f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \text{ gives the dynamics / transition function}
\]

\[
\dot{x} = Ax
\]
\[
\begin{bmatrix}
\dot{x}_2 \\
\dot{x}_1
\end{bmatrix} = \begin{bmatrix}
-1/4 & -2/5 \\
3 & -1/4
\end{bmatrix}
\begin{bmatrix}
x_2 \\
x_1
\end{bmatrix} + \begin{bmatrix}
1/4 & -2/5 \\
3 & -1/4
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[
\begin{align*}
\lambda_1 &= -0.25 - 1.10i \\
\lambda_2 &= -0.25 + 1.10i
\end{align*}
\]

\[
\begin{align*}
\lambda_1 &= -0.375 - 1.088i \\
\lambda_2 &= 0.125 + 1.029i
\end{align*}
\]
Control Paradigm

- Desired behavior
- Controller
 - Input
- Actuators
 - Forces/torques
 - System (veh model)
 - Motion force
- Sensors
- Consider error dynamics
Error Dynamics
Feedback Control

PID controller

\[u = k_p e + k_i \int_0^t e(t) \, dt + k_d \frac{\dot{e}}{\dot{e}} \]

- reduce pos error
- dampen vel error
- remove ss or accumulated errors
PID Controllers

- **Proportional**
 \[u = k_p e \]

- **Integral**
 \[u = k_i \int e(\tau) d\tau \]

- **Derivative**
 \[u = k_d \dot{e} \]
Linear Error Dynamics and Stability

\[a_0 e^{(p)} + a_{p-1} e^{(p-1)} + \ldots + a_1 \dot{e} + a_0 e = 0 \]

\[x_1 = e, \quad x_2 = \dot{e}, \quad x_3 = \ddot{e}, \ldots \]

\[x_p = \frac{-a_0}{a_p} x_1 - \frac{a_1}{a_p} x_2 - \ldots \]

\[x = Ax, \quad x = [x_1, \ldots, x_p]^T \]

\[\begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{-a_0}{a_p} & \frac{-a_1}{a_p} & \cdots & \cdots & \frac{-a_p}{a_p} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} \]

recall: \[\dot{x} = Ax \rightarrow x(t) = e^{At} x_0 \]

sys is stable if the real parts of the eigenvalues are neg. → unstable if \exists x_0 s.t. \lim_{t \to \infty} \|x(t)\| = \infty

\[e^{dt}, \text{ where } d = a + bi \in \mathbb{C} \]

\[e^{at} (\cos bt + is \sin bt) \]

\[e^{at}, \quad a > 0 \]

\[e^{at}, \quad a < 0 \]
Viewing as a Second Order System

- The second order system is: \(\ddot{e} + c_1 \dot{e} + c_2 e = 0 \)
- In standard form, we write:
 \[
 \ddot{e}(t) + 2 \xi \omega_n \dot{e}(t) + \omega_n^2 e(t) = 0
 \]
 where \(\xi \) is the damping ratio and \(\omega_n \) is the natural frequency
- The eigenvalues are given as:
 \[
 \lambda_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}
 \]
- Note that the system is stable iff \(\omega_n \) and \(\xi \) are positive
Second Order Dynamics: Cases

- **Overdamped:** $\zeta > 1$
 - Roots s_1 and s_2 are distinct
 - $\theta_e(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$
 - Time constant is the less negative root

- **Critically damped:** $\zeta = 1$
 - Roots s_1 and s_2 are equal and real
 - $\theta_e(t) = (c_1 + c_2 t) e^{-\omega_n t}$
 - Time constant is given by $1/\omega_n$

- **Underdamped:** $\zeta < 1$
 - Roots are complex conjugates:
 $$s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$$
 - $\theta_e(t) = (c_1 \cos \omega_d t + c_2 \sin \omega_d t) e^{-\zeta \omega_n t}$
Simple Damped Spring System

\[m \ddot{x} + b \dot{x} + kx = F \]

\[\ddot{x} + \frac{b}{m} \dot{x} + \frac{k}{m} x = u \]

\[\ddot{x} + 2\xi \omega_0 \dot{x} + \omega_0^2 x = u \]

\(\xi \) damping ratio
\(\omega_0 \) natural frequency

Transfer Function:

\[X(s) \frac{1}{U(s)} = \frac{1}{ms^2 + bs + k} \]

Poles:

\[s = \frac{-b \pm \sqrt{b^2 - 4mk}}{2m} \]
Undamped Case: $b = 0$

Overdamped Case: $b^2 - 4mk > 0$

Underdamped Case: $b^2 - 4mk < 0$

With Feedback Control

Sorry – no video!
Break!
Simple vehicle model: Dubin’s car

• Key assumptions
 ▪ Front and rear wheel in the plane in a stationary coordinate system
 ▪ Steering input, front wheel steering angle δ
 ▪ No slip: wheels move only in the direction of the plane they reside in

• Zeroing out the accelerations perpendicular to the plane in which the wheels reside, we can derive simple equations

Dubin’s Model

\[x = \frac{v}{\delta} \cos \Theta \]
\[y = \frac{v}{\delta} \sin \Theta \]
\[\dot{\Theta} = \frac{v}{\delta} + \tan \delta \]

length \(l \), pose: \([x, y, \Theta] \)
speed: \(v \)
steering: \(\delta \)
Path following control

• The path followed by a robot can be represented by a trajectory or path parameterized by time from a higher-level planner.

• Defines the desired instantaneous pose $p(t)$

$p(t) = [x(t), y(t), \theta(t)]$
Open-loop waypoint following

• We can write an open-loop controller for a robot that is naturally controlled via angular velocity, such as a differential-drive robot:

\[u_{\omega,OL}(t) = \begin{bmatrix} v(t) \\ \omega(t) \end{bmatrix} = \begin{bmatrix} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \\ \dot{\theta}(t) \end{bmatrix} \]

• We can write an open-loop controller for a robot with car-like steering:

\[u_{\kappa,OL}(t) = \begin{bmatrix} v(t) \\ \kappa(t) \end{bmatrix} = \begin{bmatrix} \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \\ \frac{\dot{\theta}(t)}{\sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}} \end{bmatrix} \]
Path following control

- The path followed by a robot can be represented by a trajectory or path parameterized by time → from a higher-level planner
- Defines the desired instantaneous pose $p(t)$

$p(t) = [x(t), y(t), \theta(t)]$
Path following control

- Desired instantaneous pose $p(t)$
- How to define error between actual pose $p_B(t)$ and desired pose $p(t)$ in the form of $y_d(t) - y(t)$?

$$p(t) = [x(t), y(t), \theta(t)]$$

$$p_B(t) = [x_B(t), y_B(t), \theta_B(t)]$$
Path following control

The error vector measured vehicle coordinates

\[e(t) = [\delta_s(t), \delta_n(t), \delta_\theta(t), \delta_v(t)] \]

[\delta_s, \delta_n] define the coordinate errors in the vehicle’s reference frame: along track error and cross track error

- **Along track error**: distance ahead or behind the target in the instantaneous direction of motion.
 \[\delta_s = \cos(\theta_B(t)) (x(t) - x_B(t)) + \sin(\theta_B(t)) (y(t) - y_B(t)) \]

- **Cross track error**: portion of the position error orthogonal to the intended direction of motion
 \[\delta_n = -\sin(\theta_B(t)) (x(t) - x_B(t)) + \cos(\theta_B(t)) (y(t) - y_B(t)) \]

- **Heading error**: difference between desired and actual orientation and direction
 \[\delta_\theta = \theta(t) - \theta_B(t) \]
 \[\delta_v = v(t) - v_B(t) \]

→ Each of these errors match the form \(y_d(t) - y(t) \)
A simple P-controller example

• Given a simple system: \(\dot{y}(t) = u(t) + d(t) \)
• Using proportional (P) controller:
 \[
 u(t) = -K_P e(t) = -K_P (y(t) - y_d(t))
 \]
 \[
 \dot{y}(t) = -K_P y(t) + K_P y_d(t) + d(t)
 \]
• Consider constant setpoint \(y_0 \) and disturbance \(d_{ss} \)
 \[
 \dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss}
 \]
• What is the steady state output?
 ▪ Set: \(-K_P y(t) + K_P y_0 + d_{ss} = 0\)
 ▪ Solve for \(y_{ss} \): \(y(t) = \frac{d_{ss}}{K_P} + y_0 \)
A simple P-controller example

- Given a simple system: \(\dot{y}(t) = u(t) + d(t) \)
- Consider constant setpoint \(y_0 \) and disturbance \(d_{ss} \)
 \[\dot{y}(t) = -K_P y(t) + K_P y_0 + d_{ss} \]
- Steady state output \(y_{ss} = \frac{d_{ss}}{K_P} + y_0 \)
- Transient behavior:
 \[y(t) = y_0 e^{-t/T} + y_{ss} \left(1 - e^{-t/T}\right), \quad T = 1/K_P \]
- To make steady state error small, we can increase \(K_P \) at the expense of longer transients
Control Law

Control input is given by $u = [a, \delta]^T$

where a is the acceleration and δ is the steering angle.

$$u = K \begin{bmatrix} \delta_s \\ \delta_n \\ \delta_\theta \\ \delta_v \end{bmatrix}$$

$$K = \begin{bmatrix} K_s & 0 & 0 & K_v \\ 0 & K_n & K_\theta & 0 \end{bmatrix}$$
Control Law

\[K = \begin{bmatrix} K_s & 0 & 0 & K_v \\ 0 & K_n & K_\theta & 0 \end{bmatrix} \]

The pure-pursuit controller produced by this gain matrix performs a PD-control. It uses a PD-controller to correct along-track error. The control on curvature is also a PD-controller for cross-track error because \(\delta_\theta \) is related to the derivative of \(\delta_n \).
Summary

• Reviewed linear systems and stability of differential equations
• Looked at PID controllers as a way to regulate systems using state feedback
• Derived a waypoint following error dynamics
 ➔This will be MP2! Tutorial on 3/11.
• Next time: Advanced Control Topics!
Extra Slides
Typical system models

Nonlinear hybrid dynamics
Interaction between computation and physics can lead to unexpected behaviors
Hybrid Instability: Switching between two stable linear models

Each of the modes of a walking robot are asymptotically stable.
Is it possible to switch between them to make the system unstable?
Yes! By switching between them the system becomes unstable.