
Lecture 9: PID Control
Professor Katie Driggs-Campbell

March 2, 2021

ECE484: Principles of Safe Autonomy



Administrivia 
• Safety training information posted on discord

• MP1 due this week
▪ Demo due Thursday

▪ Report due Friday

• Milestone report due Friday 3/19 by 5pm
▪ Rubric posted tonight



Today’s Plan

• Review some properties of dynamical systems and differential equations

• Take a look at PID controllers

• Build up to waypoint following using the models discussed last week! 



Typical planning and control modules
• Global navigation and planner

▪ Find paths from source to destination with static obstacles
▪ Algorithms: Graph search, Dijkstra, Sampling-based planning
▪ Time scale: Minutes
▪ Look ahead: Destination
▪ Output: reference center line, semantic commands

• Local planner 
▪ Dynamically feasible trajectory generation
▪ Dynamic planning w.r.t. obstacles
▪ Time scales: 10 Hz
▪ Look ahead: Seconds
▪ Output: Waypoints, high-level actions, directions / velocities

• Controller
▪ Waypoint follower using steering, throttle
▪ Algorithms: PID control, MPC, Lyapunov-based controller
▪ Lateral/longitudinal control
▪ Time scale: 100 Hz
▪ Look ahead: current state
▪ Output: low-level control actions



Dynamical Systems Model

Describe behavior in terms of instantaneous laws:
𝑑𝑥 𝑡

𝑑𝑡
= ሶ𝑥(𝑡) = 𝑓 𝑥 𝑡 , 𝑢 𝑡

where 𝑡 ∈ ℝ, 𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚, and 𝑓:ℝ𝑛 × ℝ𝑚 → ℝ𝑛 gives the 
dynamics / transition function



ሶ𝑥2
ሶ𝑥1

= 
−1/4 −2/5
3 −1/4

𝑥1
𝑥2

λ1=−0.25−i1.10
λ2=−0.25+i1.10

ሶ𝑥2
ሶ𝑥1

= 
1/4 −2/5
3 −1/4

𝑥1
𝑥2

λ1=+i0.1066
λ2=-i0.1066

ሶ𝑥2
ሶ𝑥1

= 
1/2 −2/5
3 −1/4

𝑥1
𝑥2

λ1=0.125+i1.029
λ2=-0.125-i1.029

Examples ሶ𝑥2
ሶ𝑥1

= 
−1/4 −2/5
3 −1/2

𝑥1
𝑥2

λ1=−0.375−i1.088
λ2=−0.375+i1.088



Control Paradigm



Error Dynamics



Feedback Control



PID Controllers

• Proportional 𝑢 = 𝑘𝑝𝑒

• Integral 𝑢 = 𝑘𝑖∫ 𝑒 𝜏 𝑑𝜏

• Derivative 𝑢 = 𝑘𝑑 ሶ𝑒

𝑘𝑝 UE

𝑘𝑖
1

𝑠
UE

𝑘𝑑𝑠 UE

U



Linear Error Dynamics and Stability



Viewing as a Second Order System

• The second order system is: ሷ𝑒 + 𝑐1 ሶ𝑒 + 𝑐2𝑒 = 0

• In standard form, we write:

ሷ𝑒 𝑡 + 2𝜉𝜔𝑛 ሶ𝑒 𝑡 + 𝜔𝑛
2𝑒 𝑡 = 0

where 𝜉 is the damping ratio and 𝜔𝑛 is the natural frequency

• The eigenvalues are given as:

𝜆1,2 = −𝜉𝜔𝑛 ± 𝜔𝑛 𝜉2 − 1

• Note that the system is stable iff 𝜔𝑛 and 𝜉 are positive



Second Order Dynamics: Cases
• Overdamped: 𝜁 > 1

• Roots 𝑠1 and 𝑠2 are distinct

• 𝜃𝑒 𝑡 = 𝑐1𝑒
𝑠1𝑡 + 𝑐2𝑒

𝑠2𝑡

• Time constant is the less negative root

• Critically damped: 𝜁 = 1
• Roots 𝑠1 and 𝑠2 are equal and real

• 𝜃𝑒 𝑡 = (𝑐1+𝑐2𝑡)𝑒
−𝜔𝑛𝑡

• Time constant is given by 1/𝜔𝑛

• Underdamped: 𝜁 < 1
• Roots are complex conjugates: 

𝑠1,2 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2

• 𝜃𝑒 𝑡 = (𝑐1cos𝜔𝑑𝑡 + 𝑐2 sin𝜔𝑑𝑡)𝑒
−𝜁𝜔𝑛𝑡



Simple Damped Spring System

𝑚 ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑘𝑥 = 𝐹

ሷ𝑥 +
𝑏

𝑚
ሶ𝑥 +

𝑘

𝑚
𝑥 = 𝑢

ሷ𝑥 + 2𝜉𝜔0 ሶ𝑥 + 𝜔0
2𝑥 = 𝑢

𝜉 damping ratio

𝜔0 natural frequency

𝑚 ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑘𝑥 = 𝑢

ℒ 𝑚 ሷ𝑥 + 𝑏 ሶ𝑥 + 𝑘𝑥 =

𝑚𝑠2𝑋 𝑠 + 𝑏𝑠𝑋 𝑠 + 𝑘𝑋 𝑠

Transfer Function:
𝑋 𝑠

𝑈(𝑠)
=

1

𝑚𝑠2 + 𝑏𝑠 + 𝑘

Poles:

𝑠 =
−𝑏 ± 𝑏2 − 4𝑚𝑘

2𝑚



Undamped Case: 𝑏 = 0 Overdamped Case: 𝑏2 − 4𝑚𝑘 > 0

Underdamped Case: 𝑏2 − 4𝑚𝑘 < 0 With Feedback Control

Sorry – no video!



Break!



Simple vehicle model: Dubin’s car

• Key assumptions
▪ Front and rear wheel in the plane in a stationary 

coordinate system

▪ Steering input, front wheel steering angle 𝛿

▪ No slip: wheels move only in the direction of the 
plane they reside in

• Zeroing out the accelerations perpendicular to 
the plane in which the wheels reside, we can 
derive simple equations

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 2016. A survey of motion planning and control techniques for self-driving 

urban vehicles. IEEE Transactions on Intelligent Vehicles 1 (1): 33–55. 



Dubin’s Model



Path following control

• The path followed by a robot can be represented by a trajectory or path 
parameterized by time
→ from a higher-level planner

• Defines the desired instantaneous pose 𝑝 𝑡

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]



Open-loop waypoint following

• We can write an open-loop controller for a robot that is naturally 
controlled via angular velocity, such as a differential-drive robot:

𝑢𝜔,𝑂𝐿 𝑡 =
𝑣 𝑡
𝜔 𝑡

=
ሶ𝑥 𝑡 2 + ሶ𝑦 𝑡 2

ሶ𝜃 𝑡

• We can write an open-loop controller for a robot with car-like steering:

𝑢𝜅,𝑂𝐿 𝑡 =
𝑣 𝑡
𝜅 𝑡

=

ሶ𝑥 𝑡 2 + ሶ𝑦 𝑡 2

ሶ𝜃 𝑡

ሶ𝑥 𝑡 2 + ሶ𝑦 𝑡 2



Path following control

• The path followed by a robot can be represented by a trajectory or path 
parameterized by time
→ from a higher-level planner

• Defines the desired instantaneous pose 𝑝 𝑡

PlantSensor Controller

Input/waypoint

Control
𝑢(𝑡)

Output

Feedback

Noise Disturbance

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]



Path following control

• Desired instantaneous pose 𝑝 𝑡

• How to define error between actual pose 𝑝𝐵 𝑡 and desired pose 
𝑝 𝑡 in the form of 𝑦𝑑 𝑡 − 𝑦(𝑡)?

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

𝑝𝐵 𝑡 = [𝑥𝐵 𝑡 , 𝑦𝐵 𝑡 , 𝜃𝐵 𝑡 ]



Path following control
The error vector measured vehicle coordinates 

e 𝑡 = [𝛿𝑠 𝑡 , 𝛿𝑛 𝑡 , 𝛿𝜃 𝑡 , 𝛿𝑣 𝑡 ]

[𝛿𝑠, 𝛿𝑛] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 

𝛿𝑠 = cos 𝜃𝐵 𝑡 𝑥 𝑡 − 𝑥𝐵 𝑡 + 𝑠𝑖𝑛 𝜃𝐵 𝑡 𝑦 𝑡 − 𝑦𝐵 𝑡

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion

𝛿𝑛 = −sin 𝜃𝐵 𝑡 𝑥 𝑡 − 𝑥𝐵 𝑡 + 𝑐𝑜𝑠 𝜃𝐵 𝑡 𝑦 𝑡 − 𝑦𝐵 𝑡

• Heading error: difference between desired and actual orientation and 
direction
𝛿𝜃 = 𝜃 𝑡 − 𝜃𝐵 𝑡
𝛿𝑣 = 𝑣 𝑡 − 𝑣𝐵(𝑡)

→ Each of these errors match the form 𝑦𝑑 𝑡 − 𝑦(𝑡)

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝𝐵 𝑡 = [𝑥𝐵 𝑡 , 𝑦𝐵 𝑡 , 𝜃𝐵 𝑡 , 𝑣𝐵(𝑡)]

𝜃𝐵

𝛿𝑠

𝛿𝑛

𝛿𝜃



A simple P-controller example

• Given a simple system: ሶ𝑦 𝑡 = 𝑢 𝑡 + 𝑑 𝑡

• Using proportional (P) controller:

𝑢 𝑡 = −𝐾𝑃𝑒 𝑡 = −𝐾𝑃(𝑦 𝑡 − 𝑦𝑑 𝑡 )

ሶ𝑦 𝑡 = −𝐾𝑃𝑦 𝑡 + 𝐾𝑃𝑦𝑑 𝑡 + 𝑑 𝑡

• Consider constant setpoint 𝑦0 and disturbance 𝑑𝑠𝑠

ሶ𝑦 𝑡 = −𝐾𝑃𝑦 𝑡 + 𝐾𝑃𝑦0 + 𝑑𝑠𝑠

• What is the steady state output? 
▪ Set: −𝐾𝑃𝑦 𝑡 + 𝐾𝑃𝑦0 + 𝑑𝑠𝑠 = 0

▪ Solve for 𝑦𝑠𝑠: 𝑦 𝑡 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑦0



A simple P-controller example

• Given a simple system: ሶ𝑦 𝑡 = 𝑢 𝑡 + 𝑑 𝑡

• Consider constant setpoint 𝑦0 and disturbance 𝑑𝑠𝑠
ሶ𝑦 𝑡 = −𝐾𝑃𝑦 𝑡 + 𝐾𝑃𝑦0 + 𝑑𝑠𝑠

• Steady state output 𝑦𝑠𝑠 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑦0

• Transient behavior:

𝑦 𝑡 = 𝑦0𝑒
−𝑡/𝑇 + 𝑦𝑠𝑠 1 − 𝑒−𝑡/𝑇 , 𝑇 = 1/𝐾𝑃

• To make steady state error small, we can increase 𝐾𝑃 at the expense 
of longer transients



Control Law

Control input is given by 𝑢 = 𝑎, 𝛿 ⊤

where 𝑎 is the acceleration and 𝛿 is the steering angle

𝑢 = 𝐾

𝛿𝑠
𝛿𝑛
𝛿𝜃
𝛿𝑣

𝐾 =
𝐾𝑠 0 0 𝐾𝑣
0 𝐾𝑛 𝐾𝜃 0

PlantSensor Controller

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

Control

𝑢 𝑡 =
𝑎
𝛿

Output

Feedback

Noise Disturbance



Control Law

𝐾 =
𝐾𝑠 0 0 𝐾𝑣
0 𝐾𝑛 𝐾𝜃 0

The pure-pursuit controller produced by this 
gain matrix performs a PD-control. It uses a 
PD-controller to correct along-track error. 

The control on curvature is also a PD-
controller for cross-track error because 𝛿𝜃 is 
related to the derivative of 𝛿𝑛.



Summary

• Reviewed linear systems and stability of differential equations

• Looked at PID controllers as a way to regulate systems using state 
feedback

• Derived a waypoint following error dynamics
→This will be MP2! Tutorial on 3/11.

• Next time: Advanced Control Topics!



Extra Slides



Hybrid system model

Nonlinear hybrid dynamics

Physical plant

𝑑𝑥

𝑑𝑡
= 𝑓𝑚𝑜𝑑𝑒 𝑥, 𝑢

merge left
𝑑𝑥

𝑑𝑡
= 𝑓𝑙𝑒𝑓𝑡(𝑥, 𝑢)

cruise
𝑑𝑥

𝑑𝑡
= 𝑓𝑐𝑟𝑠(𝑥, 𝑢)

merge right
𝑑𝑥

𝑑𝑡
= 𝑓𝑟𝑖𝑔ℎ𝑡(𝑥, 𝑢)

speed up
𝑑𝑥

𝑑𝑡
= 𝑓𝑢𝑝(𝑥, 𝑢)

slow down
𝑑𝑥

𝑑𝑡
= 𝑓𝑑𝑜𝑤𝑛(𝑥, 𝑢)

Decision and 
control software 

Interaction between computation and 
physics can lead to unexpected behaviors

Typical system models 



Run

Walk

Each of the modes of a walking robot are asymptotically stable

Is it possible to switch between them to make the system unstable?

Hybrid Instability: Switching between two stable linear models



Run

Walk

Yes! By switching between 
them the system becomes 
unstable


