6o

MP1 Walkthrough

Minghao Jiang
Eric Liang

Professor Katie Driggs-Campbell

6o

MP1 — Lane Detection

* Demo due 03/04/2021, report due 03/05/2021
* In this MP, there are 3 written questions and 4 coding questions
* The written questions will be related to convolution and filtering

* For the coding section, you will be implementing a lane detection

algorithm running in ROS/Gazebo

Written Problems 1 - 2

Problem 1 Convolution (5 points) Prove that convolution is commutative. That is given two functions

(or arrays) show that f *g = g* f. You may consider the functions to be one or two dimensional. State your
assumptions clearly.

Problem 2 Filtering (5 points) Write down a 5 x 5 Gaussian derivative kernel in the z-direction. Does it
find vertical or horizontal edges? Is this filter separable? Explain your answer.

Written Problem 3

Problem 3 Filtering in OpenCV (5 points) Under mp1/src folder, you will find a script named
filter_main.py. Implementthe filter gaussianand filter_median filter functions and test their
performances on salt-and-pepper noise and Gaussian(White) noise. Which filter is better for filtering out
salt-and-pepper noise? Which filter is better for filtering out Gaussian(White) noise? Attach your result
images in the report and explain why you think the specific filters work better for certain noises? (You will
need to do source devel/setup.bash at this step. Refer to later sections for more detail)

Figure 1: (a) Salt and Pepper Noise (b) Gaussian(White) Noise

ey I

6o

Written Problem 3

* Please attach result images in the report

» Before execute “filter_main.py”, you will need to “source
devel/setup.bash”

Implementation — Lane Detection Pipeline

e Gradient Threshold
e Color Threshold
* Perspective Transform

Color
Threshold

Camera Combined Binary Perspective Bird's Eye View
Input Image Calibration Transform Image Output Image

Gradient
Threshold

* Lane Fit

6o

6o

Gradient Threshold

* Goal: detect interesting features
* Inputs come from Camera
e Convert to grey-scale

* Use Sobel operator to find
gradient in x and y axis
* Hint: cv2.sobel

* Apply thresholds on the gradient
values

100

200

300

400

100

200

300

400

500

600

6o

Color Threshold

* Goal: highlight white and yellow
color

* Inputs come from camera

* Convert the image to different
color spaces
* E.g. RGB, HSL, HSV, etc.
e Many people use HSL, but feel free
to try other options
* Apply threshold on the different
channels in the converted color
spaces

100 4

200 A

300 A

400 +

0 100 200 300 400 500 600

6o

Combined Binary Image

* Combine the resulted binary
images from previous steps

100 A

200 A

300 A

400

100

200

300

400

500

600

6o

Perspective Transform

* Goal: convert the camera-view
image to birds-eye view (look
down from top)

* Inputs come from combination
of results from Gradient and
Color Threshold

* Fitting lanes in this view is much
easier

100 A

200 A

300 -

400

100

200

300

400

500

600

Perspective Transform

* Preserve
 Collinearity: points lie on the same line before and after transformation
» Ratio of distance: midpoint of a segment remains before and after transformation

* If (u,v) and (x, y) are the coordinates of the same point in the
coordinate systems of the original perspective and new perspective, then:

u a b cl| |z

vl =1|d e f| |y
1 0 0 1f (1

6o

Perspective Transform

* In order to find the matrix, we need to find 4 points on the original images and map the
same 4 points on the Bird’s Eye View (in total 8 points)

* Then, use cv2.getPerspectiveTransform() to find the matrix of perspective transform
* Use cv2.warpPerspective() to get the Bird’s Eye View image

6o

Lane Fit

* Goal: find the lane in the birds-eye
view image

* Input: from previous perspective
transform image

* From bottom to up, identify lanes
using sliding window approach

* Inside each window, try to find
nonzero pixels

* Follow the comments from line_fit.py

* Hint: use cv2.imshow to print out the
intermediate results

2 Lane Detection Scenarios

* Rosbag videos

* Gazebo simulation

Como)

)

Implementation Problems

Problem 4 (15 points) What are some interesting design choices you considered and executed in creating
the different functions in your lane detection modules? E.g. which color spaces do you use? how do you
determine the source points and destination points for perspective transform?

Problem 5 (25 points) In order to detect the lanes in both scenarios, you will need to modify some param-
eters. Please list and compare all parameters you have to modify and explain why do you think altering
them will be helpful?

Problem 6 (35 points) Record 2 short videos of Rviz window and Gazebo to show that your code works
for both scenarios. You can either use screen recording software or smart phone to record.

Problem 7 (10 points) One of the provided rosbags (0484_sync.bag) is recorded in snowfall condition.
Your lane detector might encounter difficulties when trying to fit the lane in this specific case. If your lane
detector works, please report what techniques you used to accomplish that. If not, try to find the possible
reasons and explain them. (Note that you will not be evaluated by whether your model fits the lane in this
case; instead we will evaluate on the reasoning you provide.)

Implementation Problem 7

* The lane is nearly invisible!

* Your lane detector may fail, but don’t panic

* Your solution will not be judged by whether your lane detector works
* Instead, we will evaluate your explanation on why it doesn’t work

6o

Submission Guideline

* Write your solution in mp1_groupname.pdf

* Record 2 videos of both rosbag and gazebo scenarios
* For lane detection in gazebo, you must show your lane detector works while
the car is moving

* Upload your code (only src/mp1/src) to Google Drive/Box Folder and
include the sharable link in your report
* Do not upload entire workspace; rosbags are very large

Questions?

