
MP1 Walkthrough
Minghao Jiang

Eric Liang
Professor Katie Driggs-Campbell 



MP1 – Lane Detection

• Demo due 03/04/2021, report due 03/05/2021

• In this MP, there are 3 written questions and 4 coding questions

• The written questions will be related to convolution and filtering

• For the coding section, you will be implementing a lane detection 

algorithm running in ROS/Gazebo



Written Problems 1 - 2



Written Problem 3



Written Problem 3

• Please attach result images in the report
• Before execute “filter_main.py”, you will need to ”source 

devel/setup.bash” 



Implementation – Lane Detection Pipeline
• Gradient Threshold
• Color Threshold
• Perspective Transform
• Lane Fit



Gradient Threshold 
• Goal: detect interesting features
• Inputs come from Camera
• Convert to grey-scale
• Use Sobel operator to find 

gradient in x and y axis
• Hint: cv2.sobel

• Apply thresholds on the gradient 
values



Color Threshold

• Goal: highlight white and yellow 
color
• Inputs come from camera
• Convert the image to different 

color spaces
• E.g. RGB, HSL, HSV, etc. 
• Many people use HSL, but feel free 

to try other options
• Apply threshold on the different 

channels in the converted color 
spaces



Combined Binary Image

• Combine the resulted binary 
images from previous steps



Perspective Transform

• Goal: convert the camera-view 
image to birds-eye view (look 
down from top)
• Inputs come from combination 

of results from Gradient and 
Color Threshold
• Fitting lanes in this view is much 

easier



Perspective Transform

• Preserve
• Collinearity: points lie on the same line before and after transformation
• Ratio of distance: midpoint of a segment remains before and after transformation

• If (𝑢, 𝑣) and (𝑥, 𝑦) are the coordinates of the same point in the 
coordinate systems of the original perspective and new perspective, then: 



Perspective Transform
• In order to find the matrix, we need to find 4 points on the original images and map the 

same 4 points on the Bird’s Eye View (in total 8 points) 
• Then, use cv2.getPerspectiveTransform() to find the matrix of perspective transform
• Use cv2.warpPerspective() to get the Bird’s Eye View image



Lane Fit

• Goal: find the lane in the birds-eye 
view image
• Input: from previous perspective 

transform image
• From bottom to up, identify lanes 

using sliding window approach 
• Inside each window, try to find 

nonzero pixels 
• Follow the comments from line_fit.py
• Hint: use cv2.imshow to print out the 

intermediate results



2 Lane Detection Scenarios

• Rosbag videos

• Gazebo simulation 



Implementation Problems



Implementation Problem 7
• The lane is nearly invisible! 
• Your lane detector may fail, but don’t panic
• Your solution will not be judged by whether your lane detector works
• Instead, we will evaluate your explanation on why it doesn’t work



Submission Guideline

• Write your solution in mp1_groupname.pdf
• Record 2 videos of both rosbag and gazebo scenarios 

• For lane detection in gazebo, you must show your lane detector works while 
the car is moving

• Upload your code (only src/mp1/src) to Google Drive/Box Folder and 
include the sharable link in your report
• Do not upload entire workspace; rosbags are very large



Questions?


