
Introduction to ROS
Eric Liang

Administrivia
● MP1 is released yesterday. Due 03/05.
● Project Pitches are on due on 02/23. You will get 5 minutes to present and

2 minutes for questions from audience.
○ Software track
○ Hardware track

● Asynchronous students must send course staff a video the day before
○ Means before 11:59 PM CST

● https://publish.illinois.edu/safe-autonomy/projects-spring-2021/
● Signup sheet in Discord:

https://docs.google.com/spreadsheets/d/1ExPJB_k32eS30z607XDBdSceGT
WisBDOt7jZfhjLXMU/edit?usp=sharing

https://publish.illinois.edu/safe-autonomy/projects-spring-2021/
https://docs.google.com/spreadsheets/d/1ExPJB_k32eS30z607XDBdSceGTWisBDOt7jZfhjLXMU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ExPJB_k32eS30z607XDBdSceGTWisBDOt7jZfhjLXMU/edit?usp=sharing

Basic Autonomous Vehicle Example
● Actuators

○ Motor
○ Servo (Steering)

● Sensors
○ Camera

● On-Board Computer
○ Raspberry Pi Zero
○ STM32F030 Microcontroller

Task: Detect Distracted Human and Stop

http://www.youtube.com/watch?v=QtfVU_17tac&t=197

Solution A (The Trivial Solution)

I2C IO Driver

Motor (PWM)

Servo (PWM)

Camera Driver User Program

Camera

But… Can Raspberry Pi Zero Run Realtime ML?
● Short answer: Not really
● Possible Solutions:

○ A Bigger car with a Larger GPU
○ A Remote Large GPU

I2C IO Driver

Motor (PWM)

Servo (PWM)

Camera Driver User Program
(Remote)

Camera

Solution B (ROS)

Vehicle
Control Node

Motor (PWM)

Servo (PWM)

Raspicam
ROS Node

User Program
Node

Camera

What is ROS?
● Operating System for Robotics

○ Hardware Abstraction
○ Low-Level Device Control
○ Common Libraries/Packages
○ Communication between Processes

● Use Cases
○ Autonomous Vehicle Research (GEM Platform)
○ Autonomous Vehicle Simulator (MP)
○ Collaborative Robots (Robot Arms)
○ Research Robots (Turtlebot)

http://wiki.ros.org/kinetic

ROS Computation Graph
● Nodes: Processes (Python/C++)
● Master: Server
● Messages: Data Structures
● Topics: Message Buses
● Services: Request/Reply
● Bags: Datasets
● Publisher: Publish Message to

Topic
● Subscriber: Subscribe Message

from Topic

http://wiki.ros.org/ROS/Concepts

ROS Computation Graph: MP0 Example

ROS Nodes and Master
● Node: ROS Processes (Camera, Lidar, ML Algorithms)
● Master: Let the Nodes Know Each Other/ Keep Parameters
● roscore: Start ROS Master Server (Invoked during first roslaunch

automatically)
● rosnode list: List all ROS nodes
● rosnode info [node_name]: Tells you more about specific node
● rosrun [ros_package] [node_name]: Run a ROS node
● python [node_name.py]: Run a ROS node (More for Debugging)

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

Yet Another Example
● One of My Favourite Sensor: Intel Realsense RGB-D Camera

https://www.intelrealsense.com/depth-camera-d435/

Realsense Node
● As an RGB-D camera, it provides:

○ RGB Image
○ Depth Image
○ RGB Point Cloud
○ And a lot of other things…

● Part of results after running rosnode info:
○ Publications:

■ /camera/color/image_raw [sensor_msgs/Image]
■ /camera/depth/image_raw [sensor_msgs/Image]
■ /camera/depth/color/points [sensor_msgs/PointCloud2]
■ …

ROS Topics
● Topics: Message Buses
● Publisher(s) stream message through topic to subscriber(s).
● rostopic list [-v]: List all topics (-v for more information)
● rostopic info [topic_name]: Print info about topic (message type)
● rostopic echo [topic_name]: Print messages to screen
● rostopic echo [topic_name] -n 1: Print 1 message to screen
● rostopic hz [topic_name]: Print publish frequency
● rostopic bw [topic_name]: Print topic bandwidth

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

ROS Messages
● Messages are data structures with

typed fields defined by .msg files.
● To read/write message, simply use

the following notation:
○ msg1.fieldA = 1

● The above works only on primitive
types.

○ bool
○ int8/uint8/int16/uint16/int32/uint32/int6

4/uint64
○ float32/float64
○ string
○ “time/duration”

https://docs.ros.org/en/melodic/api/
sensor_msgs/html/msg/Image.html

Realsense… again
● Results after running rostopic list

○ /camera/color/image_raw
○ /camera/depth/image_raw
○ /camera/depth/color/points
○ ...

● rostopic info /camera/color/image_raw:
○ Type: sensor_msgs/Image
○ Publishers:

■ * /camera/realsense2_camera_manager
(http://localhost:39161/)

○ Subscribers: None <--- Note this

● rostopic echo?
○ We need a way to visualize image.

Your Friend RQT
● ROS’s official 2D GUI
● rqt: Topic Monitor + Node Graph

Visualizer + Transformation
Tree+...

● rqt_image_view: Specialized in
displaying image messages

Publishers and Subscribers
● Now run rostopic info /camera/color/image_raw:

○ Type: sensor_msgs/Image
○ Publishers:

■ * /camera/realsense2_camera_manager (http://localhost:39161/)
○ Subscribers:

■ * /rqt_gui_cpp_node_25437 (http://localhost:44713/) <--- Now we have a subscriber

● Publisher: Publishes messages to topic (source)
● Subscriber: Subscribes messages from topic (sink)
● Nodes can have multiple publishers and subscribers.

ROS Computation Graph Revisited

ROS Services
● ROS Topic Model: Good for

Many-to-Many One-Way
Transport

● What if you want a request/reply
interaction in a distributed
system?

● ROS Service: One node requests,
and another node replies

○ Spawning models
○ Setting parameters
○ ... http://docs.ros.org/en/kinetic/api/dy

namic_reconfigure/html/msg/Config
.htmlhttp://wiki.ros.org/Services

ROS Bags
● ROS Bags: Record Messages from

Topics and Replay Later
● Like a video but with more information
● rosbag record -a: Record everything
● rosbag info [*.bag]: Summary of

contents
● rosbag play [*.bag]: Play bag once
● rosbag play -l [*.bag]: Loop playback

http://wiki.ros.org/rosbag/Commandline

ROS Workflow in MP0
● catkin_make: Build ROS catkin workspace (similar to make)
● source devel/setup.bash: Execute a set of commands to setup the

workspace (location of ROS packages, nodes, etc.)
● roslaunch mp0 mp0.launch: Launch set of nodes with parameters for

running MP0
● python main. py --d_sense 15 --v_0 5 --a_b 5 --t_react 0.00: Launch main

MP nodes
● python set_pos.py --x 0 --y 0: Launch a node that sets the position of the

car

Example: ROS Publisher

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

Example: ROS Subscriber

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

ROS Launch Files
● roslaunch: A Tool for Easily Launching Multiple ROS Nodes

○ Remember how nodes are separated and “kinda” independent?

● What it also does: Setting Global Parameters on Server
○ Robot Model
○ Robot Name
○ …

● Launch files
○ XML Format
○ Can Find Packages and Pass Arguments
○ Mapping Topics
○ ...

http://wiki.ros.org/roslaunch/XML

ROS Packages
● Package: Collection of Node Files,

Launch Files, CMake List, Meta
Information, and Other Things

● Git Packages: Put under src folder
(MP packages, Lidar, GEM…)

● apt-get Packages: Gazebo,
Controllers, Drivers…

○ Install by apt-get/apt package
manager

http://wiki.ros.org/Packages

https://subscription.packtpub.com/book/hardware_and_creative/97817884789
53/1/ch01lvl1sec13/understanding-the-ros-filesystem-level

Transformation (TF2)
● In real life, cars and robots are not

a single point.
● For example:

○ Where is the camera frame with
respect to the robot base? (Fixed)

○ Where is the robot base with respect
to the starting point? (Dynamic)

● TF2 Listener (“Subscriber”)
● TF2 (Static) Broadcaster

(“Publisher”)

Realsense… The Third Time
● Realsense Tracking Camera

https://www.intelrealsense.com/tracking-camera-t265/

What does it do?
● As an tracking camera, it provides:

○ IMU Data
○ Odometry
○ Transformation (Static/Dynamic)
○ Optional Fisheye Image
○ And a lot of other things…

● Part of results after running rosnode info:
○ Publications:

■ /camera/odom/sample [nav_msgs/Odometry]
■ /tf [tf2_msgs/TFMessage]
■ /tf_static [tf2_msgs/TFMessage]
■ …

Your Other Friend RViz
● rqt: 2d visualizer
● RViz: 3d visualizer
● Provided in the MP (Launch file)
● Can also be launched using “rviz”
● Supports common ROS messages
● Especially useful for:

○ Robot Model
○ Transformation (TF)
○ Point Cloud
○ LaserScan (2D Lidar)

Gazebo
● Multi-Robot Simulator
● ROS Simulator
● Simulates:

○ Robot Motion (Physics)
○ Robot Model
○ Sensor (Camera/Lidar)
○ Custom Plugins

● MPs use Gazebo for simulating
the vehicle and the environment.

How to make things run faster?
● Gazebo is demanding (like a game).

○ Physics Engine
○ Rendering
○ Sensor Simulation

● Algorithms
○ Code with efficiency in mind
○ Some algorithms just run slowly

● VMWare
○ Increase CPU count
○ Increase memory
○ Increase VGPU memory

End of ROS Intro: Q&A
● Can you use ROS1 on Windows/macOS/WSL?

○ Yes, but I wouldn’t recommend you do that.

● What about ROS2?
○ It will probably be better than ROS1 but lacks community support at current stage.

● My Gazebo crashes!
○ Restart/ Reboot

● How do I record video demo?
○ OBS Studio

Computer Vision
● OpenCV

○ MP1: Lane Detection
○ Pre-Processing
○ Camera Configurations
○ Post-Processing
○ Matching

● NumPy

https://opencv.org/

Machine Learning
● PyTorch
● TensorFlow
● NumPy
● We have 2x 2080Ti on GEM

^ NOT AN EXAMPLE OF MP1

https://github.com/MaybeShewill-CV/lanenet-lane-detection

