Lecture 5: Recognition

Professor Katie Driggs-Campbell
February 11, 2021

ECE484: Principles of Safe Autonomy
Administrivia

• MP0 is due tomorrow
 ▪ Make sure you give a demo by the end of today!
 ▪ Report due tomorrow (Friday) at 5pm
The Challenge of Perception

Sensor Goal: Process electromagnetic radiation from the environment to construct a *model* of the world, so that the constructed model is close to the real world and that the output is *actionable*
Filter Outputs
Today’s Plan

• Computer vision overview
• Object recognition
 ▪ Feature representations
 ▪ Classification
• (Convolutional) Neural Networks
The Three R’s of Computer Vision

Recognition

Reconstruction

Reorganization

Slide Credit: J. Malik
What we would like to infer...

Will person B put some money into Person C’s tip bag?
The Three R’s of Vision

- Recognition
- Reorganization

Slide Credit: J. Malik
other direction...

Recognition

cognition

Reorganization
The Three R’s of Vision

Recognition

Reconstruction

Input Image

Instance Segmentation

Viewpoint estimation

Full 3D Reconstruction

High Frequency 2.5D Reconstruction
What is image recognition?
Image Recognition

\[f(\text{apple}) = \text{“apple”} \]
\[f(\text{tomato}) = \text{“tomato”} \]
\[f(\text{cow}) = \text{“cow”} \]
Learning Models

\[
\begin{align*}
\text{error} & \quad \text{Cat!} \\
\hat{y} & \quad y \\
f & \quad ?
\end{align*}
\]
Learned models (like neural networks) are good when:
• Your system needs to learn and adapt
• Original is highly nonlinear / multi-variable
• Physics / model based approaches are not available or are too computationally expensive
Training

Training Images → Image Features → Training → Learned model

Testing

Testing Image → Image Features → Prediction → Learned model

Slide credit: D. Hoiem
Naïve classification

Fig. 4. Size-normalized examples from the MNIST database.
Classification in Feature Space
Naïve Features \rightarrow Orientation Histograms

- Orientation histograms can be computed on blocks of pixels, so we can obtain tolerance to small shifts of a part of the object.
- For gray-scale images of 3D objects, the process of computing orientations, gives partial invariance to illumination changes.
- Small deformations when the orientation of a part changes only by a little causes no change in the histogram, because we bin orientations.
Histogram of Oriented Gradients

Error rates vs. training examples

Misclassifications
Histogram of Oriented Gradients
Part-based models

Bag of features

1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary
4. Represent images by frequencies of “visual words”
Learning a Visual Vocabulary

Clustering

Visual vocabulary

Cluster
Example Visual Codebooks

Source: B. Leibe
Bag of features

1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary
4. Represent images by frequencies of “visual words”
Bag of features

1. Extract local features
2. Learn “visual vocabulary”
3. Quantize local features using visual vocabulary
4. Represent images by frequencies of “visual words”
Images as Histogram of Patches

frequency

codewords

source: Svetlana Lazebnik
Today’s Plan

• Computer vision overview
• Object recognition
 ▪ Feature representations
 ▪ Classification
• (Convolutional) Neural Networks
From Shallow to Deep Learning

Traditional “Shallow” Pipeline

- Feature representation
- Trainable classifier
- Class label

“Deep” Recognition Pipeline

- Layer 1
- Layer 2
- Simple classifier
Multi-Layer Perceptron (MLP)
Activation Functions

• Sigmoid
 ▪ Homage to the original formulation
 ▪ Not very popular nowadays as they tend to saturate and kills gradients

• Tanh
 ▪ This is a scaled sigmoid and is almost always preferred

• ReLU – Rectified Linear Unit
 ▪ Fast computation, doesn’t saturate, might lead to better convergence rates
 ▪ Tends to be fragile in training

• Maxout: $\max(w_1^T x + b_1, w_2^T x + b_2)$
 ▪ Extension of ReLU that does not die
 ▪ Doubles the number of parameters for every unit
Network Architectures and Sizes

For regular networks, most commonly use fully connected network

Sizing of networks determined by layers, number of units, and/or number of parameters

6 units, 6 biases
\[3 \times 4 + 4 \times 2 = 20\] weights
26 learnable parameters

9 units, 9 biases
\[2 \times 4 + 4 \times 4 + 4 \times 1 = 28\] weights
37 learnable parameters

For context, convolutional networks typically have on the order of 100 million parameters
Universal Function Approximators

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0, 1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon > 0$ and any function $f \in C(I_m)$, there exist an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$ for $i = 1, \ldots, N$, such that we may define:

$$F(x) = \sum_{i=1}^{N} v_i \varphi \left(w_i^T x + b_i \right)$$

as an approximate realization of the function f; that is,

$$|F(x) - f(x)| < \varepsilon$$

for all $x \in I_m$. In other words, functions of the form $F(x)$ are dense in $C(I_m)$.

A feedforward network with a single hidden layer containing a finite number of units can approximate continuous functions on compact subsets of \mathbb{R}^n, under mild assumptions on the activation function.
Classification Improvements
Neural Networks

• Pros:
 + Flexible and general function approximation framework
 + Generally successful is high dimensional and model free problems

• Cons
 - Very few theoretical guarantees
 - Training is prone to local optima and unstable
 - Large amount of training data and computing power are required
 - Huge variety of implementation choices need to be hand tuned (network architectures, parameters, etc.)
From Shallow to Deep Learning

Traditional “Shallow” Pipeline

Image Pixels → Feature representation → Trainable classifier → Class label

“Deep” Recognition Pipeline

Image Pixels → Layer 1 → Layer 2 → Simple classifier
Layers as filters
Convolutional Layers

- Each unit has a receptive field that connects it to a small local region of the input
 - If all units in a depth slice use identical weights, then the forward pass of this layer can be computed as a convolution of the weights with the input volume
- Each conv layer acts like a learnable filter that activates for some type of visual feature (e.g., edge, corner, eye, cat)
- Recall: large ConvNets have a ton of parameters
 - Parameter sharing restricts the weights along one slice of the depth, reducing the parameters down to ~35,000 (see first point)

http://cs231n.github.io/convolutional-networks/
ConvNets transform the original image layer by layer from the original pixel values to the final class scores. This is done via convolutional layers, pooling, ReLUs, and fully connected (FC) layers.

- Conv/FC layers perform transformations that are a function of trainable parameters.
 - Example: CIFAR-10 images are size 32x32x3, so one fully-connected unit in a first hidden layer of a regular NN would have $32 \times 32 \times 3 = 3072$ weights.
- ReLU/Pool layers are fixed and not trained.
Pooling Layers

The goal of pooling is to progressively reduce the spatial size of the representation and the amount of parameters and computation:

• operates independently on depth slice and resizes it spatially, often using the max operation

Generally speaking:

• Accepts a volume of size \(W_1 \times H_1 \times D_1 \)
• Requires two hyperparameters: their spatial extent \(F \), the stride \(S \),
• Produces a volume of size \(W_2 \times H_2 \times D_2 \) where:
 \[
 W_2 = \frac{(W_1 - F)}{S} + 1 \\
 H_2 = \frac{(H_1 - F)}{S} + 1 \\
 D_2 = D_1
 \]
Pooling

Single depth slice

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

max pool with 2x2 filters and stride 2
ConvNet Recap

- Feature Maps
- Pooling
- ReLU
- Convolutional Layer (trained)
- Input
ConvNet Recap

- Feature Maps
- Pooling
- ReLU
- Convolutional Layer (trained)
- input

Source: R. Fergus, Y. LeCun
ConvNet Recap

- **Feature Maps**
- **Pooling**
- **ReLU**
- **Convolutional Layer (trained)**
- **input**

Source: R. Fergus, Y. LeCun
ConvNet Recap

- Feature Maps
- Pooling
- ReLU
- Convolutional Layer (trained)
- input

Source: R. Fergus, Y. LeCun
Summary

• Crash course in computer vision
 ▪ Recognition, reconfiguration, and reconstruction
 ▪ Traditional features vs. learned features

• Introduced the basics of neural networks
 ▪ Did not discuss: backpropagation or training methods
 ▪ Did not discuss: state-of-the-art object detection architectures
 o Take a look at yolo tutorials – will post a few on discord!

• Next time: we’ll look at modeling and control of vehicles!
So you want to train a neural net.

1. Pre-process data
 • Zero-center and scale by standard deviation
2. Initialize network
 • Initializing weights can be difficult due to instabilities
 • Small random numbers from normal distribution
3. Set up your regularization (penalty term, dropout)
4. Pick a loss function
 • Depends on problem, but try to shoot for softmax whenever possible
5. You are ready to train your network!
 • Initially try to overfit on a tiny subset of your data ~20 samples. Make sure you get zero loss.
6. Sweep over hyperparameters
 • Initial learning rate and decay schedule, regularization strength
 • Use cross-validation techniques and be prepared to wait. This can take weeks for large networks.
What to watch during training

Loss Rates

- very high learning rate
- low learning rate
- high learning rate
- good learning rate

Training vs. Validation

- training accuracy
- validation accuracy: little overfitting
- validation accuracy: strong overfitting

Risks for Autonomy

• What is it about neural networks that are particularly difficult?
 • Training stability is a problem
 • Large amounts of data are required
 • Huge amounts of computation are required
Adversarial Examples

Find the minimum perturbation that will result in a misclassification. Resulting noise is often imperceptible.

Even transferring to different cameras or into the physical world can be quite difficult.
A few things to keep in mind

1. Machine Learning is not always the answer – try simple methods first.
 • However, use ML over a complex heuristic. A simple heuristic can only get you so far, while a complex heuristic is unmaintainable.

2. When picking features, make sure they are generalizable!

3. Watching out for data imbalances or other quirks with your data.

4. You may skew your data by causing a discrepancy between how you handle data in the training and testing.

5. Cross validation is key – never peek at your testing data. You may create a feedback loop between your model and your algorithm.