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Administrivia 

• Please form teams!

• Questions for the Guest Speakers

• Review COVID precautions for the GEM



Today’s Lecture

• Project Review

• Simple example of ensuring safety



Projects: explore, inspire, and impress

• We will provide a fully equipped Polaris GEM e2 
vehicle (test vehicle and simulation) and basic 
autonomy modules

• Action Items:
• If interested in working with hardware, become an IRL 

member asap!
• Safety Driver training in the next few weeks

• Team formation form due this week!
• Project Pitch (in-class, likely parallel track) in one month 
• Two milestones due through out the semester
• Project Presentations second to last week of class
• Final report (and video demo) in place of final

https://robotics.illinois.edu/become-a-user/


Environment 
& Agent Models

Compute Platform

Low-level Control

Trajectory Planning

Decision-Making

Perception

Sensors

Simulation & Validation



An honest scientific approach
1. Create detailed mathematical models of the autonomous systems and its environment

2. Enumerate the precise requirements of the system and the conditions on the 
environment under which it is supposed to work

3. Analyze the system to either 
▪ prove that all behaviors meet the requirement (perhaps with high probability)

▪ find counter-examples, corner cases, etc., debug and repeat

• Currently, there are fundamental flaws in making this work for autonomous systems

• Why study this approach? 
▪ Careful reasoning can expose flawed assumptions and potentially bad design choices

▪ Found success in other industries: microprocessors, aviation, cloud computing, nuclear, … 

▪ Working deliberately towards a more perfect understanding is a worthwhile intellectual struggle 



How to assess safety?

1. Create a model of the autonomous system
▪What are the inputs and outputs to the system?

▪What are the expectations on behaviors?

▪No model is perfect – some models are useful!

2. Identify the requirements and assumptions

3. Analyze model to show that it meets the requirements 
under the assumptions



Emergency Braking for Pedestrians

Image Credit: Bosch





What are the design considerations and tradeoffs?



Modeling the scenario

• What is a model of a system?

• A mathematical model describes how a system behaves.
▪ What are the key parameters and states? 

▪ How are the parameters selected by nature? 

▪ What are the initial conditions of the state? 

▪ How do the state change over time? … 

▪ What parts of the model are available for observation/analysis? 

• Models include the implicit and explicit assumptions (biases) we are 
making about the system



A simple model



A simple model as a program

Image Credit: Bosch



Model Behavior



More explicit program



Identifying requirements: Define safety

• A requirement is a precise statement about what the behaviors of the 
system should and should not do

• An invariant is a requirement that something always holds. Examples:
▪ “Car always remains far from the pedestrian”

▪ “Drones never cross over to above 400ft in the airspace”

▪ “A fully attentive safety driver should always be present during autonomy 
experiments” 



Does our model satisfy the requirement?

Requirement: “Car always remains far from the pedestrian”

Invariant 1. For all 𝑥10, 𝑥20, 𝑣0, 𝐷𝑠𝑒𝑛𝑠𝑒 , 𝑎𝑏 and for all 𝑡, 𝑥 𝑡 . 𝑑 > 0

→ Does this invariant hold for our model?



Another Invariant!
Invariant 2. 𝑡𝑖𝑚𝑒𝑟 +

𝑣1

𝑎𝑏
≤

𝑣0

𝑎𝑏

Invariant 2. For all  𝑥10, 𝑥20, 𝑣0, 𝐷𝑠𝑒𝑛𝑠𝑒 , 𝑎𝑏 and for all 𝑡,  𝑥(𝑡). 𝑡𝑖𝑚𝑒𝑟 +
𝒙 𝑡 .𝑣1

𝑎𝑏
≤

𝑣0

𝑎𝑏



Proof by Induction (1) 
Invariant 2. For all  𝑥10, 𝑥20, 𝑣0, 𝐷𝑠𝑒𝑛𝑠𝑒 , 𝑎𝑏 and for 
all t,

𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 +
𝒙(𝑡).𝑣1

𝑎𝑏
≤ 𝑣0/𝑎𝑏

1. Base case. 𝑃(𝒙(0))

𝒙 0 . 𝑡𝑖𝑚𝑒𝑟 +
𝒙 0 . 𝑣1

𝑎𝑏
= 0 +

𝑣0
𝑎𝑏

≤
𝑣0
𝑎𝑏

2. Induction. 𝑃 𝒙(𝑡) ⇒ 𝑃(SimpleCar(𝒙(𝑡)))
Three cases to consider
1. 𝑑 > 𝐷𝑠𝑒𝑛𝑠𝑒
2. 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒 ∧ 𝑣1 ≥ 𝑎𝑏
3. 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒 ∧ 𝑣1 < 𝑎𝑏



Proof by Induction (2) 
Invariant 2. For all  𝑥10, 𝑥20, 𝑣0, 𝐷𝑠𝑒𝑛𝑠𝑒 , 𝑎𝑏 and for 
all t,

𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 +
𝒙(𝑡).𝑣1

𝑎𝑏
≤ 𝑣0/𝑎𝑏

1. 𝑑 > 𝐷𝑠𝑒𝑛𝑠𝑒

𝒙(𝑡 + 1). 𝑡𝑖𝑚𝑒𝑟 +
𝒙(𝑡+1).𝑣1

𝑎𝑏
= 𝒙 𝑡 . 𝑡𝑖𝑚𝑒𝑟 +

𝒙 𝑡 .𝑣1

𝑎𝑏
≤ 𝑣0/𝑎𝑏

2. 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒 ∧ 𝑣1 ≥ 𝑎𝑏
𝒙(𝑡 + 1). 𝑡𝑖𝑚𝑒𝑟 +

𝒙(𝑡+1).𝑣1

𝑎𝑏
= 

𝒙 𝑡 . 𝑡𝑖𝑚𝑒𝑟 + 1 +
𝒙 𝑡 . 𝑣1 − 𝑎𝑏

𝑎𝑏
≤ 𝑣0/𝑎𝑏

3. 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒 ∧ 𝑣1 < 𝑎𝑏
𝒙(𝑡 + 1). 𝑡𝑖𝑚𝑒𝑟 +

𝒙(𝑡+1).𝑣1

𝑎𝑏
= 𝒙 𝑡 . 𝑡𝑖𝑚𝑒𝑟 + 0 ≤ 𝑣0/𝑎𝑏



Remarks and takeaway messages from the exercise

• Invariant 2 takes us close to proving safety of our model (Invariant 1) 

• We will need to add assumptions on the model to complete the proof 

• The proof by induction shows a property of all behaviors of our model

• The proof is conceptually simple, but can quickly get tedious and error prone
▪ Verification and Validation tools like Z3, Dafny, PVS, CoQ, AST, MC2, automate this

Model A

Requirement R

V&V

Proof that A 
satisfies R

Counterexample 
of A violating R



Baked-in Assumptions (1)

• Perception. 
▪ Sensor detects obstacle iff distance 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒
▪ How to model vision errors?

• Pedestrian Behaviors.
▪ Pedestrian is assumed to be moving with 

constant velocity from initial position

• No sensing-computation-actuation delay. 
▪ The time step in which 𝑑 ≤ 𝐷𝑠𝑒𝑛𝑠𝑒 is true is 

exactly when the velocity starts to decrease



Baked-in Assumptions (2)

• Mechanical or Dynamical assumptions.
▪ Vehicle and pedestrian moving in 1-D lane

▪ Does not go backwards

▪ Perfect (discrete) kinematic model for velocity and acceleration

• Nature of time.
▪ Discrete Time. Each execution of the above function models 

advancement of time by 1 step. If 1 step = 1 second, then

𝑥1 𝑡 + 1 = 𝑥1 𝑡 + 𝑣1 𝑡 ⋅ 1
o We cannot talk about what happens between [t, t+1]! 

▪ Atomic Steps. 1 step = complete (atomic) execution of the program. 
o We cannot directly talk about the states visited after partial execution of program



Summary
• Form your team. Decide project track. 

▪ Sign-up to be member of IRL. 

• Careful modeling and reasoning can expose flawed assumptions, bad 
design bugs, and make the system explainable.
▪ What are the baked-in assumptions and prescribed assumptions?
▪ How to formalize requirements (e.g., safety, smoothness)?

• An example of an inductive proof for safety verification of a discrete time 
model
▪ Discrete time model: states, initial states, transition function
▪ Requirements, invariants, e.g., safety 
▪ Counter-examples

• Detailed discussion of baked-in assumptions and discovered assumptions


