Lecture 2: Simple Safety

Professor Katie Driggs-Campbell January 28, 2021

ECE484: Principles of Safe Autonomy

Administrivia

- Please form teams!
- Questions for the Guest Speakers
- Review COVID precautions for the GEM

Today's Lecture

- Project Review
- Simple example of ensuring safety

Projects: explore, inspire, and impress

- We will provide a fully equipped Polaris GEM e2 vehicle (test vehicle and simulation) and basic autonomy modules
- Action Items:
 - If interested in working with hardware, become an <u>IRL</u> <u>member</u> asap!
 - Safety Driver training in the next few weeks
 - Team formation form due this week!
 - Project Pitch (in-class, likely parallel track) in one month
 - Two milestones due through out the semester
 - Project Presentations second to last week of class
 - Final report (and video demo) in place of final

An honest scientific approach

- 1. Create detailed mathematical models of the autonomous systems and its environment
- 2. Enumerate the precise requirements of the system and the conditions on the environment under which it is supposed to work
- 3. Analyze the system to either
 - prove that all behaviors meet the requirement (perhaps with high probability)
 - find counter-examples, corner cases, etc., debug and repeat
- Currently, there are fundamental flaws in making this work for autonomous systems
- Why study this approach?
 - Careful reasoning can expose flawed assumptions and potentially bad design choices
 - Found success in other industries: microprocessors, aviation, cloud computing, nuclear, ...
 - Working deliberately towards a more perfect understanding is a worthwhile intellectual struggle

How to assess safety?

1. Create a *model* of the autonomous system

- What are the inputs and outputs to the system?
- What are the expectations on behaviors?
- No model is perfect some models are useful!
- 2. Identify the *requirements* and *assumptions*
- 3. Analyze model to show that it meets the requirements under the assumptions

Emergency Braking for Pedestrians

Image Credit: Bosch

What are the design considerations and tradeoffs?

Modeling the scenario

- What is a model of a system?
- A *mathematical model* describes how a system behaves.
 - What are the key parameters and states?
 - How are the parameters selected by nature?
 - What are the initial conditions of the state?
 - How do the state change over time? ...
 - What parts of the model are available for observation/analysis?
- Models include the implicit and explicit assumptions (biases) we are making about the system

A simple model

A simple model as a program

1 SimpleCar $(D_{sense}, v_0, x_{10}, x_{20}, a_b)$, $x_{20} > x_{10}$ initially: $x_1 = x_{10}, v_1 = v_0, x_2 = x_{20}, v_2 = 0$ s = 0, timer = 0if $d \leq D_{sense}$ $5 \quad s = 1$ if $v_1 \geq a_b$ $v_1 = v_1 - a_b$ 7 timer = timer + 1else 9 $v_1 = 0$ 11 $x_1 = x_1 + v_1$

Image Credit: Bosch

Model Behavior

1 SimpleCar $(D_{sense}, v_0, x_{10}, x_{20}, a_b), x_{20} > x_{10}$ initially: $x_1 = x_{10}, v_1 = v_0, x_2 = x_{20}, v_2 = 0$ 3 s = 0, timer = 0if $d \le D_{sense}$ 5 s = 1if $v_1 \ge a_b$ 7 $v_1 = v_1 - a_b$ timer = timer + 1 9 else $v_1 = 0$ 11 $x_1 = x_1 + v_1$

More explicit program

1 SimpleCar $(D_{sense}, v_0, x_{10}, x_{20}, a_b), x_{20} > x_{10}$ initially: $x_1 = x_{10}, v_1 = v_0, x_2 = x_{20}, v_2 = 0$ 3 s = 0, timer = 0if $d \le D_{sense}$ 5 s = 1if $v_1 \ge a_b$ 7 $v_1 = v_1 - a_b$ timer = timer + 1 9 else $v_1 = 0$ 11 $x_1 = x_1 + v_1$

1 SimpleCar $(D_{sense}, v_0, x_{10}, x_{20}, a_b)$, $x_{20} > x_{10}$ **initially**: $x_1(0) = x_{10}, v_1(0) = v_0, x_2(0) = x_{20}, v_2(0) = 0$ s(0) = 0, timer(0) = 03 $d(t) = x_2(t) - x_1(t)$ 5 if $d(t) \leq D_{sense}$ s(t+1) = 17 **if** $v_1(t) \ge a_b$ $v_1(t+1) = v_1(t) - a_b$ timer(t+1) = timer(t) + 19 else $v_1(t+1) = 0$ 11 timer(t+1) = timer(t)13 else s(t+1) = 015 $v_1(t+1) = v_1(t)$ timer(t+1) = timer(t)17 $x_1(t+1) = x_1(t) + v_1(t)$

Identifying requirements: Define safety

- A *requirement* is a precise statement about what the behaviors of the system should and should not do
- An *invariant* is a requirement that something *always* holds. Examples:
 - "Car always remains far from the pedestrian"
 - "Drones never cross over to above 400ft in the airspace"
 - "A fully attentive safety driver should always be present during autonomy experiments"

Does our model satisfy the requirement?

Requirement: "Car always remains far from the pedestrian" Invariant 1. For all $x_{10}, x_{20}, v_0, D_{sense}, a_b$ and for all t, x(t), d > 0 \rightarrow Does this invariant hold for our model?

Another Invariant!

Invariant 2. $timer + \frac{v_1}{a_b} \le \frac{v_0}{a_b}$

Invariant 2. For all $x_{10}, x_{20}, v_0, D_{sense}, a_b$ and for all t, x(t). time $t + \frac{x(t).v_1}{a_b} \le \frac{v_0}{a_b}$

Proof by Induction (1)

Invariant 2. For all $x_{10}, x_{20}, v_0, D_{sense}, a_b$ and for all t,

$$\mathbf{x}(t)$$
. timer $+\frac{\mathbf{x}(t).\mathbf{v}_1}{a_b} \leq \mathbf{v}_0/a_b$

- 1. Base case. P(x(0)) $x(0). timer + \frac{x(0). v_1}{a_b}$
- 2. Induction. $P(\mathbf{x}(t)) \Rightarrow P(\text{SimpleCar}(\mathbf{x}(t)))$ Three cases to consider
 - 1. $d > D_{sense}$
 - 2. $d \leq D_{sense} \wedge v_1 \geq a_b$
 - 3. $d \leq D_{sense} \wedge v_1 < a_b$

```
1 SimpleCar(D_{sense}, v_0, x_{10}, x_{20}, a_b), x_{20} > x_{10}
   initially: x_1(0) = x_{10}, v_1(0) = v_0, x_2(0) = x_{20}, v_2(0) = 0
 s(0) = 0, timer(0) = 0
   d(t) = x_2(t) - x_1(t)
 5 if d(t) \leq D_{sense}
     s(t+1) = 1
 7 if v_1(t) \ge a_b
        v_1(t+1) = v_1(t) - a_b
      timer(t+1) = timer(t) + 1
 9
     else
        v_1(t+1) = 0
11
        timer(t+1) = timer(t)
13 else
     s(t+1) = 0
     v_1(t+1) = v_1(t)
     timer(t+1) = timer(t)
17 x_1(t+1) = x_1(t) + v_1(t)
```


Proof by Induction (2)

Invariant 2. For all $x_{10}, x_{20}, v_0, D_{sense}, a_b$ and for all t,

 $\mathbf{x}(t)$. timer $+\frac{\mathbf{x}(t).\mathbf{v}_1}{a_b} \le \mathbf{v}_0/a_b$

- 1. $d > D_{sense}$ $x(t+1).timer + \frac{x(t+1).v_1}{a_b} = x(t).timer + \frac{x(t).v_1}{a_b} \le v_0/a_b$
- 2. $d \leq D_{sense} \wedge v_1 \geq a_b$ $x(t+1).timer + \frac{x(t+1).v_1}{a_b} =$ $x(t).timer + 1 + \frac{x(t).v_1 a_b}{a_b} \leq v_0/a_b$
- 3. $d \leq D_{sense} \wedge v_1 < a_b$ $x(t+1).timer + \frac{x(t+1).v_1}{a_b} = x(t).timer + 0 \leq v_0/a_b$

1 SimpleCar $(D_{sense}, v_0, x_{10}, x_{20}, a_b)$, $x_{20} > x_{10}$ initially: $x_1(0) = x_{10}, v_1(0) = v_0, x_2(0) = x_{20}, v_2(0) = 0$ s(0) = 0, timer(0) = 0 $d(t) = x_2(t) - x_1(t)$ 5 if $d(t) \leq D_{sense}$ s(t+1) = 17 **if** $v_1(t) \ge a_b$ $v_1(t+1) = v_1(t) - a_b$ timer(t+1) = timer(t) + 1else $v_1(t+1) = 0$ 11 timer(t+1) = timer(t)13 else s(t+1) = 015 $v_1(t+1) = v_1(t)$ timer(t+1) = timer(t)17 $x_1(t+1) = x_1(t) + v_1(t)$

Remarks and takeaway messages from the exercise

- Invariant 2 takes us close to proving safety of our model (Invariant 1)
- We will need to add assumptions on the model to complete the proof
- The proof by induction shows a property of all behaviors of our model
- The proof is conceptually simple, but can quickly get tedious and error prone
 - Verification and Validation tools like Z3, Dafny, PVS, CoQ, AST, MC2, automate this

Baked-in Assumptions (1)

- Perception.
 - Sensor detects obstacle **iff** distance $d \leq D_{sense}$
 - How to model vision errors?
- Pedestrian Behaviors.
 - Pedestrian is assumed to be moving with constant velocity from initial position
- No sensing-computation-actuation delay.
 - The time step in which $d \leq D_{sense}$ is true is exactly when the velocity starts to decrease

Baked-in Assumptions (2)

- Mechanical or Dynamical assumptions.
 - Vehicle and pedestrian moving in 1-D lane
 - Does not go backwards
 - Perfect (discrete) kinematic model for velocity and acceleration
- Nature of time.
 - Discrete Time. Each execution of the above function models advancement of time by 1 step. If 1 step = 1 second, then

 $x_1(t+1) = x_1(t) + v_1(t) \cdot 1$

We cannot talk about what happens between [t, t+1]!

- Atomic Steps. 1 step = complete (atomic) execution of the program.
 - $_{\odot}\,$ We cannot directly talk about the states visited after partial execution of program

Summary

- Form your team. Decide project track.
 - Sign-up to be member of IRL.
- Careful modeling and reasoning can expose flawed assumptions, bad design bugs, and make the system *explainable*.
 - What are the baked-in assumptions and prescribed assumptions?
 - How to formalize requirements (e.g., safety, smoothness)?
- An example of an inductive proof for safety verification of a discrete time model
 - Discrete time model: states, initial states, transition function
 - Requirements, invariants, e.g., safety
 - Counter-examples
- Detailed discussion of baked-in *assumptions* and discovered assumptions

